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Abstract: Inter-core crosstalk statistical distribution due to Rayleigh backscattering is analyzed for 

bi-directional transmission in multi-core fibers. The counter-propagating crosstalk distribution is 

shown to be consistent with a chi-squared statistics with eight degrees of freedom. © 2024 The 

Author(s)  

 

1. Introduction 

The rapid growth of data center traffic volume, and introduction of new communication-intensive applications, drive 

the demand for optical interconnects with high bandwidth, high spatial density, and low power consumption, making 

multi-core fibers (MCFs) a compelling candidate for next generation optical fiber links. Inter-core crosstalk is one of 

the important transmission impairments in uncoupled core MCFs. Due to weak coupling between the cores, it is 

sensitive to the deployment conditions and perturbations caused by the environmental factors. As such, both the 

average value and the statistical distribution of the crosstalk must be considered when engineering practical MCF 

transmission systems.  

A significant amount of work has been published to quantify MCF crosstalk dependence on the fiber design 

parameters and deployment conditions. Theoretical analysis based on both the coupled mode theory (CMT) [1-6] and 

the coupled power theory (CPT) [7,8] provides consistent results for estimation of crosstalk mean value. The CMT 

approach also allows evaluation of the crosstalk statistical distribution, which was shown [2,9] in the case of co-

propagating main signal and coupled core channels to be represented by a χ2(X,ν) distribution with ν=4 degrees of 

freedom. The experimentally measured statistical distributions for co-propagating crosstalk, Xco, were found to be in 

good agreement with the theoretical results for various deployment conditions [2,6,9]. Thus, MCF design optimization 

can be guided by the simulations of crosstalk statistics, relevant for practical transmission systems. 

Crosstalk reduction via signal propagation in opposite directions over nearest-neighbor cores of MCF [10-12] is 

well suited for full duplex transmission systems, as a replacement of optical fiber pairs to implement bidirectional 

links. The dominant physical mechanisms contributing to the crosstalk Xcounter in the case of counter-propagating main 

and coupled core channels, are Rayleigh backscattering and reflection at the connectors, fan-in/fan-out couplers, and 

at the transceiver [13]. Both the Rayleigh backscattered crosstalk Xb and the reflected crosstalk Xr are significantly 

smaller than Xco due to low levels of light scattering and ≈-40 dB reflection than can be achieved in practice, allowing 

an increase in MCF core density, compared to unidirectional transmission links. Indirect coupling of Xco from nearest-

neighbor cores in the interleaved core arrangement can add-up to a similar level of crosstalk as Xcounter, and thus this 

mechanism must also be considered for bi-directional transmission links. For Xco < -35 dB per span, the main 

component of the counter-propagating crosstalk Xcounter is due to Rayleigh backscattering [13], and the relation of the 

mean value of Xb to that of the directly coupled co-propagating crosstalk Xco has been previously analyzed [11,14]. 

However, the statistical distribution for counter-propagating crosstalk has not been reported yet. 

In this paper, we apply the CMT to evaluate the statistical distribution of Xb, which is found to follow a probability 

density function given by a χ2(X,ν) distribution with twice the number of degrees of freedom, ν=8, compared to the 

distribution of Xco. The origin of this difference is attributed to the presence of two different physical paths for 

backscattered light contribution to Xb. 

2.  Backscattered crosstalk analysis 

We use the crosstalk model based on the CMT, wherein the fiber of length L is represented by a set of uniform 

segments of length ΔLi, within each of which the phase and polarization of the electric field are constant, so we can 

apply the analytic solution for the coupled mode field amplitudes, including the effect of bending and twisting on the 

mode phase difference between the cores [6]. To represent random perturbations of the MCF refractive index that 

affect mode phases, we consider random distribution of the fiber segment lengths, and random change of the mode 

polarization state across segment boundaries. Fig. 1 shows schematically the main signal with power P0=A0
2 launched 
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into core 1 and coupled into backward propagating crosstalk in core 2 via two paths: (a) Rayleigh backscattered signal 

propagating in core 1 and coupling into core 2, resulting in scattered power Ps2 contribution to Xb; and (b) coupling of 

the main signal from core 1 into co-propagating crosstalk in core 2, followed by backscattering in core 2, which 

contributes power P2s to Xb, and P2 to Xco. We note that separate consideration of the two paths for backscattered 

crosstalk is based on the assumption that recoupling back into the original core can be neglected due to low crosstalk, 

P2,s2,2s/P0  << 1. 

 
Fig 1. Schematic of Rayleigh backscattered light contribution to the counter-propagating crosstalk in a two core MCF via (a) backscattering of the 
main signal in core 1 and subsequent coupling into core 2; and (b) coupling of the main signal to core 2, followed by Rayleigh backscattering. 
 

The power P2 represents the co-propagating component of the crosstalk Xco= P2(L)/P1(L), where P1(z)= P0exp(-αz) 

is the power in the MCF core 1, and α is the optical power attenuation coefficient. P2 can be calculated based on the 

contribution to the crosstalk from each segment, computed using the CMT [6]: 

   𝑃2(𝑧) = ∑ [(
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where κi, Δβi, and ΔLi are the mode amplitude coupling coefficient, phase difference in propagation constants of the 

two cores, and the length of segments i=1…N(z) comprising an MCF of length 𝑧. The coefficient 𝑔2=𝜅2+(Δ𝛽/2)2 

captures the relative strength of the coupling and phase detuning between the cores, while φij is the angle between the 

electric field polarization in segments i and j. We assume that the attenuation coefficient is substantially the same in 

both cores, hence Xco becomes independent of α. The amount of Rayleigh backscattered power accumulated in core 1 

at location z along the fiber length, can be represented as: 

𝑃𝑠1(𝑧) = ∫ 𝜂𝑃1(𝑧′)𝑑𝑧′ = ∫ 𝜂𝑃0𝑒𝑥𝑝(−𝛼𝑧′)𝑑𝑧′
𝐿
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𝛼
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𝐿

𝑧
                                   (2) 

where η=αRSB/2 is the backscatter factor that depends on the Rayleigh scattering loss coefficient αR and backscatter 

capture fraction SB, defined by the core design [14]. The total backscattered crosstalk power Ps2 then can be derived 

analogously to Eq. (1), using Eq. (2): 
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Both the first term in Eq. (3), which contributes to determining the average value of the crosstalk, and the second term, 

that accounts for statistical variations, depend on the attenuation coefficient α. To derive the contribution P2s to Xb, we 

use Eq. (1) for the coupled power in core 2 to evaluate backscattered power in each fiber segment i, and sum the 

resulting contributions backpropagated to z=0: 
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From Eqs. (3)-(4) the Raileigh backscattered crosstalk is Xb=[Ps2(0) + P2s(0)]/P1(L) and by taking an ensemble average 

of Xb over random realizations of segment lengths, the properties of the statistical distribution of the backscattered 

crosstalk can be determined.  

3.  Numerical simulation results 

We evaluate distribution of Xb numerically for a given MCF core design, geometry, length, and deployment condition 

W4J.2 OFC 2024 © Optica Publishing Group 2024

Disclaimer: Preliminary paper, subject to publisher revision



 

 

using a large number of random realizations of the fiber. To reduce the computational cost due to direct double 

summation in Eq. (4), we implement it by considering the contribution of the power coupled in segment i from core 1 

to core 2 and use analytic integration of the backscattered power from zi to L in core 2 to include contribution from 

segments j > i, analogous to the integration of the backscattered power in core 1 given by eq. (2). 

  

Fig 2.  (a) Difference in the mean values of co-propagating and backscattered crosstalk vs span length computed numerically (symbols) vs analytic 

result (solid lines). (b) Corresponding statistical distributions of the co-propagating and backscattered crosstalk for α=0.15 dB/km, αR=0.13 dB/km 
at L=40km. Dashed lines represent single parameter fits of χ2(X,ν) function to numerical results. 

Fig. 2 shows the results of numerical simulations for a 2-core MCF with 45 μm core spacing, coupling coefficient 

κ=0.007532 m-1 at 1550 nm wavelength, and statistical correlation length Lc=0.04 m for exponential distribution 

function of fiber segment lengths [6]. The fiber with attenuation coefficient α=0.15-0.21 dB/km and Rayleigh 

scattering loss αR=0.13-0.19 dB/km is deployed on a D=375 mm diameter spool. The difference between the average 

values of the co-propagating and backscattered crosstalk is computed using Eq. (4) with double summation (results 

limited to L<20 km) as well as based on analytic integration of backscattered power, showing full agreement between 

the two, Fig. 2(a). Good agreement is also obtained with the difference in mean values evaluated based on the analytic 

approximation given by Eq. (17) in [14]. The numerically computed crosstalk probability density functions are shown 

in Fig. 2(b) for a span length of 40 km. The co-propagating and backscattered crosstalk distributions are well 

approximated by χ2(X,ν) statistical distribution functions with ν=4 and ν=8, respectively. The doubling of degrees of 

freedom is due to two channels, Ps2 and P2s, assumed to be statistically independent in the backscattered crosstalk Xb 

model. The amplitude, phase and two orthogonal states of polarization in each channel result in a total of eight random 

variables that contribute to the overall Rayleigh backscattered power. This crosstalk distribution model was found to 

fit well the numerical results for all simulated span lengths of up to 50 km. 
 

4.  Conclusions 

Inter-core crosstalk due to Rayleigh backscattering in MCFs designed for bi-directional transmission has been 

analyzed based on the CMT formulation. Expressions for the crosstalk power coupled to the neighboring core and 

propagating in the opposite direction have been derived and simplified to allow efficient numerical evaluation. 

Statistical distribution of the backscattered crosstalk probability density function is found to be consistent with the 

χ2(X,ν) distribution with eight degrees of freedom, ν=8, due to two different physical paths for backscattered light 

contribution to Xb. These results allow a more complete characterization of crosstalk for a realistic estimation of 

crosstalk-induced impairments in bi-directional MCF transmission links. 
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