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Abstract: We introduce an iteration-dependent scaled min-sum decoding for low-rate LDPC
codes in CV-QKD, achieving near-sum product algorithm performance with reduced complexity,
and facilitating CV-QKD hardware implementation. © 2023 The Author(s)

1. Introduction
Quantum computing has advanced remarkably in recent years, posing a significant threat to the current data en-
cryption systems that rely on the computational hardness of the factoring problem [1]. Quantum key distribution
(QKD) is a physical-layer security scheme that provides secure keys to be used with a symmetric encryption
scheme. Continuous-variable quantum key distribution (CV-QKD) is a promising technique for secure commu-
nication over long distances, as demonstrated by the experimental achievement of a cryptographic key exchange
over more than 200 km [2].

However, implementing CV-QKD in hardware remains a challenge, especially in the information reconciliation
step, where the two parties need to generate a common raw key from their measurements. This step typically
involves the use of multi-edge type (MET) low-density parity-check (LDPC) codes [3–5], which require large
block lengths and high decoding iterations to achieve satisfactory performance [3]. These requirements result in
a low decoder throughput, which reduces the secret key rate (SKR) compared to the achievable theoretical value.
Therefore, low-complexity decoding algorithms are needed to optimize the system performance.

The scaled min-sum algorithm (MSA) is a frequently-used low-complexity decoding scheme, which approxi-
mates the sum-product algorithm (SPA) under the assumption of high signal reliability. This assumption holds for
high-capacity channels, like optical channel, thus the performance gap between the MSA and the SPA is minimal.
However, in the case of low-capacity channels such as quantum channels, this assumption is not met, leading to
substantial deterioration in performance. Consequently, there is a need for a new low-complexity scheme tailored
to CV-QKD operation.

In this work, we present a new method to compute the scaling coefficients for the scaled MSA that achieves near-
SPA performance with lower complexity. We do this by rewriting the SPA check node (CN) update equation as a
scaled MSA CN update equation and then estimating the scaling coefficients for each edge type and iteration. We
evaluate the performance of our proposed iteration-dependent (ID) scaled MSA (ID-MSA) algorithm by decoding
TBP LDPC codes with rates of R = 0.01 and R = 0.1 [3], which are suitable to be used in long-distance CV-QKD
systems.
2. Check Node Update Approximation
In this section, we derive an approximation for the SPA CN update equation, which computes the output log-
likelihood ratio (LLR) for each connected edge based on input LLRs received from its connected variable nodes
(VNs).

The box-plus operator for input LLRs L1 = α1β1 and L2 = α2β2, where αi and βi represent the sign and the
magnitude of the LLR respectively, can be expressed as [6, Ch. 5]
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To achieve the SPA performance with the MSA, we focus on the second term in (1), which represents the
correction term of SPA over MSA. We denote this correction term as s(β1,β2). Without loss of generality, we
assume that β1 ≤ β2 and β2 = aβ1 for any 1 ≤ a ∈ R. Under this assumption, the correction term s(β1,β2) can be
reformulated as follows:
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Here, step (i) involves expressing the logarithmic terms using the Taylor series. In step (ii), by assuming small
values of kβ1, we employ exp(x) ≈ 1+ x. This assumption is reasonable since the density of the degree-1 VNs
in typical low-rate codes used in CV-QKD is high. To give an example, in the TBP-LDPC code of rate 0.01 [3],
98.9% of the CNs are connected to degree-1 VNs. It is important to note that this approximation holds for small
values of kβ1, and the presence of exp(−kaβ1) aids in reducing the error between the actual function and its
approximation for large values. In step (iii), we employ the geometric series 1/(1+ x) = ∑

∞
k=0(−1)kxk.

Replacing the correction term in (1) with the approximate correction term in (2) yields

L1 ⊞L2 ≈ α1α2
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Hence, the output LLR of the ith edge of CN j with VN connections M( j) can be written as:

Li ≈

(
∏

k∈M( j)/{i}
αk

)
βm

(
∏

ℓ∈M( j)/{i,m}
tanh

(
βℓ

2

))
, (4)

where m is the index of the minimum β . While we derived (4) for low-rate codes, the same expression can also be
used for high rate codes with a small performance penalty [7].

3. Iteration-dependent Scaling for the MSA

In the previous section, we demonstrated that the SPA CN update equation can be effectively approximated using
a scaled MSA CN update equation. The scaling factor, in this case, is determined by the product of hyperbolic tan-
gent functions applied to the LLRs. Nonetheless, the computational demands of calculating this factor in real-time,
involving hyperbolic tangent evaluations and multiplications, remain quite substantial. To mitigate this computa-
tional complexity, we introduce an alternative method: we propose using the expected value E{∏ℓ tanh(βℓ/2)}
for the MSA’s scaling factor. This approach simplifies the method in [8] to calculate the scaling coefficients that
depend on both decoding iterations and edge type.

In the context of a long-distance CV-QKD system, it becomes evident that fixed scaling coefficients as in [8],
which do not consider the input LLR values, are not sufficient. This observation is corroborated by (4), where
the second-smallest LLR value dominates the scaling term. Additionally, transmission over the quantum channel
leads to LLR distributions with low mean and high variance. Consequently, it is imperative to consider the second-
smallest LLR value in order to improve the scaling coefficients and approach performance levels close to the SPA.
This approach enables us to express the CN update equation of the ID-MSA for the tth iteration as follows:
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where m′ is the index of the second smallest β . To obtain the ID scaling term ct
i (βm′), we take the conditional

expectation of the scaling factor in (4) given the second smallest β value and assume independent LLRs. The ID
scaling term is then given by
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where S= {(−∞,−βm′ ]∪ [βm′ ,∞)} is the set of values that have a larger magnitude than the second minimum βm′

and f t
ℓ(x) is the probability density function of the LLR at iteration t for the edge type ℓ.

4. Results and Evaluation
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Fig. 1: Average values of ct
i (βm′) for R = 0.01 TBP-

LDPC code protograph [3]

In this section, we evaluate the performance of the ID-MSA
to decode TBP-LDPC codes of rates R= 0.01 and R= 0.1 of
block length N, as defined in [3]. All algorithms perform 500
decoding iterations on the output of the binary-input additive
white Gaussian noise channel with noise power σ2

n = N0/2.
To obtain the required statistics used in (6), we perform an

extrinsic information transfer chart analysis using the code
protograph [9]. Subsequently, we calculate look-up tables
(LUTs) for ct

i(βm′) for t ∈ {1, . . . ,500}, and i ∈ {1, . . . ,e},
where e is the number of different edge types in the code
graph and equals 11 and 8 for the rates 0.01 and 0.1, respec-
tively, and βm′ is quantized to 32 values. Figure 1 shows how
the mean scaling factor Eβm′{ct

i(β
′
m)} changes with the de-

coding iteration for each edge type for the code of rate R = 0.01. This figure clearly demonstrates the necessity of
using multiple scaling factors in the MSA. To reduce the size and redundancy of the LUTs, we apply the K-means
algorithm to obtain the final compressed LUT with 2600 entries for the decoding process.
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(a) R = 0.01 TBP-LDPC code [3] with N = 998400
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(b) R = 0.1 TBP-LDPC code [3] with N = 128000

Fig. 2: Performance comparison of sum-product algorithm (SPA), scaled min-sum algorithm with the factor 0.75 (MSA), and
the proposed iteration-dependent MSA (ID-MSA)

We compare the performance of the algorithms at an FER of 0.1, since the secret key rate of the system is
typically maximized at this value [2]. Fig. 2a shows that the SP algorithm outperforms the scaled MS algorithm
by 5.2 dB for the R = 0.01 code. This large gap reduces the SKR significantly, making the MSA unsuitable for
CV-QKD applications. However, by using iteration-dependent scaling coefficients, we can reduce this gap to only
0.059 dB, achieving a performance close to that of the SP algorithm. Similarly, Fig. 2b shows that the ID-MSA
also performs close to the SP algorithm for the R = 0.1 code, with a gap of only 0.068 dB. Thus, the ID-MSA is a
promising candidate for low-complexity key reconciliation in long-distance CV-QKD scenarios.

To compare the decoding complexity of ID-MSA with existing algorithms, we consider the CN update as de-
scribed in [10], which employs (1) for the 3 LLRs with the smallest magnitudes to approach SPA performance.
This algorithm requires two evaluations of (1) causing 2 table lookups for each CN update. In contrast, our pro-
posed ID-MS algorithm requires only one lookup. Hence the decoding complexity of the proposed algorithm is
less than the current approaches that can achieve near-SPA performance.

5. Conclusion

The ID-MSA proposed in this paper exhibits more than 5 dB performance improvement over the MSA, achieving
near-SPA decoding performance with reduced computational complexity. Simulation results validate the efficacy
of our approach and demonstrate its effectiveness across a wide range of low rates. This makes it a promising
solution for efficient low-rate decoding, particularly suitable for CV-QKD systems and other related applications.
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