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Abstract: The real-time CCDM and inverse CCDM were realized in an FPGA. The DM and inverse 

DM achieved a throughput of 16.8GBaud and supported on-line reconfiguration to realize different 

entropies with fine granularity. © 2024 The Author(s)  

1. Introduction 

In high capacity WDM systems, high order modulation formats have been widely used to approach the channel 

capacity. In the presence of fiber transmission impairments, the signal-to-noise ratio (SNR) is limited. In the additive 

white Gaussian noise channel, with a given SNR and the order of quadrature amplitude modulation (QAM), the 

maximum mutual information can be achieved if the QAM symbols are subject to the Maxwell-Boltzmann (MB) 

distribution [1]. To generate non-uniformly distributed symbols, PS techniques are necessary. Some representative PS 

schemes are, for example, constant composition distribution matcher (CCDM), many-to-one (MTO), hierarchical 

distribution matcher (HiDM) and enumerative sphere shaping (ESS) [2].  

To deploy the PS techniques in practical systems, the FPGA implementation is of great importance as the practical 

digital communication systems are based on real-time DSP chips like ASICs or FPGAs. To be implemented in the 

FPGA, the PS scheme needs to have low complexity and can be re-organized in a parallel structure. Up to now, many 

works focusing on real-time implementation of different PS techniques have been reported as is shown in Table 1. 

Compared to other intensively investigated PS schemes listed in Table 1, the CCDM is the only one that can provide 

fine granularity of the output entropy, making CCDM adaptive to different scenarios, e.g., links with different 

distances, number of WDM channels or amplifiers with different noise figures, etc. However, in the mainstream view, 

the real-time CCDM is hard to be realized with the arithmetic coding (AC) [3], which is inherently a sequential 

procedure and is usually regarded incompatible with the parallelization structure of real DSP chips [4]. As far as we 

know, although CCDM has been widely used in high-capacity offline transmission experiments since it was proposed, 

there has not been any report on approaches to realize a real-time parallel CCDM.  

In this paper, an effective method to realize the real-time CCDM and inverse CCDM in an FPGA chip is proposed. 

Based on the modified AC scheme, the CCDM can be implemented in a parallel structure with a high symbol rate. 

The FPGA verification proved that, with a codeword length of 48, the real-time CCDM and inverse CCDM for PS-

16QAM can achieve a symbol rate of 16.8GBd. Besides, it can support on-line configuration of the probabilistic 

distribution and can thus realize an entropy from 2.5bit/symbol to 4.0bit/symbol with an information divergence 

(compared to the ideal MB distribution) lower than 0.04.  

2.  Principle of the parallel CCDM scheme 

2.1.  The Parallel Arithmetic Coding 

The parallel arithmetic coding we used to make the CCDM suitable for FPGA implementation is a modification of 

the traditional AC introduced in [3]. In the AC-based CCDM, a bit sequence is mapped to a symbol sequence that is 

a permutation of a collection of symbols C, whose size equals to the codeword length. The symbols occurring in C 

belongs to an alphabet α, whose size equals to the number of the types of symbols [5]. The occurrence number of each 

type of symbols in C is used to achieve the desired distribution and can be on-line configured in the real-time CCDM. 

In the following example, the codeword length is 8, the alphabet α is {“A”, “B”}, the occurrence numbers of “A” and 

“B” are set to 6 and 2, respectively, and C is therefore {“A”, “A”, “A”, “A”, “A”, “A”, “B”, “B”}, leading to a 

distribution of the output sequence of {3/4, 1/4}.  

Fig. 1 shows the detailed process of mapping 1011 to a sequence belonging to one of the permutations of C 

described above. The CCDM is consisted of 8 what we call “Division and Selection” modules (D&S). Each D&S 

module divides the input intervals into several parts and select one of them to send to the next layer. The module 

imports three signals from the previous. The first signal is the size of the current range, i.e., the number of remaining 
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intervals Ninterval. The second one is Nrem, a vector that records the number of remaining symbols, whose size equals to 

the size of the alphabet α. The third one is Itarget, which indicates the index of the target unit interval in the remaining 

intervals. Each module also outputs a symbol called Sout based on the result of selection. At last, the desired sequence 

is composed of the outputs of 8 D&S modules. In this example, the Ninterval, Nrem and Itarget inputted into the first layer 

is 28, {6,2} and 11 respectively. The value of Ninterval equals to the number of available permutations, which in this 

example is 𝐶8
6 = 𝐶8

2 = 28 [5]. The ratio of the sizes of the parts equals to the ratio of the occurrence numbers of 

remaining symbols, which is 6:2 in the first module since there are 6 unused “A”s and 2 unused “B”s. Therefore, 

interval 0 to 20 belong to the “part A” and the rest intervals belong to the “part B”. Besides, the input bit sequence 

1011, if treated as a binary number, can be translated to the decimal (11)10, indicating that the target interval is the 12th 

of the 28 intervals. As is shown in Fig.1, it’s clear that the target interval is inside the “part A”. Thus, the first output 

symbol is “A” and the intervals belonging to “part A” are sent to the next D&S module. The Nrem is also updated to 

{5,2} as one “A” has been used. When delivered from one layer to another, e.g., from the 3rd D&S to the 4th D&S in 

Fig. 1, the remaining intervals need to be re-numbered from 0 to Ninterval-1, and the Itarget is also updated to indicate the 

target number in the new intervals. After the 8th D&S finishes its work, there will be 8 output symbols consisting the 

output sequence of the CCDM. The inverse CCDM follows the similar principle and is also split to 8 layers of D&S 

modules. The only difference is that the “selection” operation of inverse CCDM is determined by the received symbol. 

 
Fig. 1. The arithmetic coding scheme of (a) CCDM and 

(b) inverse CCDM 

Table 1. Reported PS schemes  

Scheme 
Granularity 

of entropy 
Latency Rate loss 

Real-time 

impl. 

HiDM coarse low low [6,7] 

MTO coarse low high [8] 

ESS coarse medium low [9] 

BWDM coarse low not mentioned [4] 

CCDM 

(short) 
fine medium medium 

Not 

reported CCDM 

(long) 
fine high low 

2.2. The FPGA Implementation of CCDM 

Based on the AC scheme, as Fig. 2(a) shows, the real-time CCDM and inverse CCDM with a codeword length of 

48 are realized in a fully pipelined and parallel structure in a 16-nm FPGA (Xilinx XCVU13P). We assumed that the 

probabilistic amplitude shaping (PAS) scheme was used and the modulation format is 16QAM [5]. Therefore, we only 

illustrate the modules related to the amplitude bits in Fig. 2(a). In the left part of Fig. 2(a), the real-time CCDM is 

consisted of 48 D&S modules. The D&S modules execute the operations described in Fig. 1 and are fully-pipelined 

so that in every clock cycle, each D&S module can output one symbol. However, the symbols generated by these 

D&S modules in the same clock cycle don’t belong to the same codeword. Therefore, extra delay modules at the 

output ports are needed to compensate the latency. The real-time inverse CCDM is also realized in the same way 

except the delay modules are moved to the input side. The Virtual IO allows us to set the values of some signals inside 

the FPGA on line. By controlling them, we can change the occurrence number of symbols. For example, if we want 

to generate a sequence consisted of 20 “A”s, 12 “B”s, 12 “C”s and 4 “D”s, we only need to set the Ninterval to 

𝐶48
20 × 𝐶28

12 × 𝐶16
12 = 926614306769553015213600  and set the Nrem to {20,12,12,4} and the probabilistic 

distribution of the outputted symbols will be {0.4167,0.25,0.25,0.0833}. 

Table. 2 Details of the implementations 
Codeword Length L=24 @ 350MHz L=40 @ 350MHz L=48 @ 350MHz 

Resources Utilization CCDM iCCDM Total CCDM iCCDM Total CCDM iCCDM Total 

LUT 44660 24087 70992 131781 83162 217121 198197 129937 330310 

FF 45804 21658 71679 138735 66917 209869 212467 100729 317413 

LUT per 1GBd 5316.667 2867.5 8451.429 9412.929 5940.143 15508.64 11797.4 7734.34 19661.3 

FF per 1GBd 5452.857 2578.333 8533.214 9909.643 4779.786 14990.64 12646.8 5995.77 18893.6 

Power (W) 0.704 0.368 1.166 2.192 1.4 3.708 3.636 2.727 6.48 

Power per 1GBd (W) 0.08381 0.04381 0.13881 0.15657 0.1 0.26486 0.21643 0.16232 0.38571 

Symbol rate (GBd) 8.4 14 16.8 

We also evaluated the complexity and power consumption of three CCDMs with different codeword lengths. The 

details of these implementations are listed in Table. 2. The complexity can be represented by the number of look-up-
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tables (LUT) and flip-flops (FF). In our design, to make the comparison fair, the block random access memory (BRAM) 

is not used. These numbers are accurately calculated by the Vivado software after the implementation process. The 

highest real-time symbol rate achieved in the FPGA is 16.8GBaud. According to the results of FPGA verification, any 

distribution with a codeword length of 48 can be realized by on-line configuration. The placement of FPGA is given 

in Fig. 2(b). The picture of the evaluation board is showed in Fig. 2 (c).  

 
Fig. 2. (a) The structure of real-time parallel CCDM. (b) The FPGA placement (L=48).  (c) The picture of the evaluation board. 

3. Performance analysis 

We evaluated some indexes that are important for the hardware implementation or PS and showed the results in Fig. 

3. The distribution of CCDM’s output is optimized to minimize the information divergence between the realized 

distribution with the MB distribution under different entropies. Fig. 3(a) shows the latency of the DM and inverse DM 

with a clock frequency of 350MHz, where a linearity relationship between the total latency and the square of the 

codeword length can be observed. Fig. 3(b) shows the complexity and symbol rate under different codeword length 

with a clock frequency of 250MHz. Fig. 3(c) demonstrate the rate loss and the information divergence with different 

target entropies and codeword lengths. The insets of Fig. 3(c) exhibit the distribution of the symbols outputted by the 

CCDM with a codeword length of 48. According to the results, the entropy is adjustable with fine granularity.  

 
Fig. 3. Some important indexes: (a) The latency; (b) The complexity and symbol rate; (c) The rate loss and information divergence.  

4. Conclusion  

We have proposed a real-time CCDM and inverse CCDM scheme and realized it on an FPGA chip. The scheme is 

fully parallel and pipelined and allows on-line reconfiguration of the distribution. In the FPGA verification, the real-

time symbol rate achieved 16.8GBaud.  
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