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Abstract:We present the large-scale, production deployment of reconfigurable Lightwave Fabrics
(LWF) for Machine Learning (ML) supercomputers. These fabrics consist of a custom developed
optical circuit switch (OCS), circulators, and WDM transceiver technologies. The use of a LWF
dramatically enhances the current generation 4096 tensor processing unit (TPU) system in both
availability (up to 3x) as well as performance (up to 3.3x) with modest power and cost increases
(1% and 6%, respectively).
OCIS codes: (060.0060) Fiber optics and optical communications; (060.4250) Networks

1. Introduction
Over the past several years, the growth of machine learning (ML) has been insatiable, with the number of model
parameters scaling to one trillion and beyond. However, developing systems to run these large synchronous models
is limited by reliability, due to the inherently larger number of imperfect components along with the sensitivity of
synchronous models to hardware faults. As a solution to this fundamental problem of system size versus
reliability/availability, we have applied our Lightwave Fabric (LWF) technology for use in our production ML
systems [1]. The LWFs are constructed using large-radix optical circuit switches (OCSes), circulators, and custom
WDM optical transceivers. The benefits of LWFs for datacenter networks (DCNs) have been described previously
[2]. The reconfigurability of the LWF enables high availability of large ML systems at reasonable cost and power
increases relative to an equivalently sized static system. In addition, we demonstrate substantial speed up in model
training times by leveraging the reconfigurability created by LWFs to match and optimize the hardware
configuration to the ML model. We also gain significant enhancements in utilization, modularity, deployment, and
security [1].

Fig. 1: Left: ML superpod containing 4096 TPUs arranged in a 3D torus topology. Each elemental cube contains 4x4x4=64
TPUs, with opposing faces of cubes interconnected via links through the OCS. Right: WDM bidirectional (bidi) links through the
OCS. WDM and circulators increase multiplexing for efficient OCS port and fiber use.

2. ML TPU Superpods
The left side of Fig. 1 illustrates the ML system or superpod leveraging LWFs. Shown at the bottom of the figure,
the fundamental building block consists of TPU ASICs arranged in a 4 × 4 × 4 3D torus configuration/topology.
Each of these elemental cubes thus contains 64 TPUs, with intra-cube connections achieved electrically within one
rack. 64 of these rack-sized cubes are then optically connected to the OCSes such that any x, y, or z face of a cube
can connect to the opposite x, y, or z face of any other cube. The right side of Fig. 1 illustrates an end-to-end
bidirectional (bidi) inter-cube optical link. The TPU connects to a pluggable OSFP optical transceiver, which uses
WDM and a circulator to multiplex four bidirectional channels per single mode fiber strand and path through the
OCS [1, 3]. The high degree of multiplexing enables efficient use of the fiber plant and reduces the total number of
OCSes. This reduction improves the overall system availability, as described in the next section. Similar to the DCN
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use case [2], the OCS and single mode fiber are data rate and modulation format agnostic, allowing reuse across
multiple generations and the associated CapEx costs to be amortized across multiple decades versus multiple years.

The cluster-level job scheduling system uses the LWF to dynamically connect one or more elemental cubes to
create compute “slices” and program the inter-chip-interconnect (ICI) network for the slice. Most slices have a 3D
torus topology with wrap-around links. The number of cubes connected per dimension of the torus can be different,
i.e., when the entire pod of 642= 4096 nodes is used, slice topologies ranging from 4 × 4 × 256 to 16 × 16 × 16 can
be configured with the minimum increment of four set by the size of the elemental 4 × 4 × 4 cube. Furthermore,
multiple different-sized workloads with differing communication patterns can be configured within a single pod. The
non-blocking nature of the OCS permits the scheduling of new slices of different sizes that are physically isolated
from the other jobs that are already scheduled and running.

3. Superpod Evaluation

Availability: The ability to reliably compose slices is critically dependent on the availability of the entire LWF. We
readily achieve >99% availability in our production environments [1]. Correspondingly, the overall effective
throughput (i.e., goodput) for larger slices significantly improves compared to a static configuration over a wide
range of host/server availability conditions.

To quantify this improvement, we use a single OCS availability of 99.9% and hold the overall system
availability constant at 97%. For a single elemental cube slice (64 TPUs), to achieve this target availability requires
holding back some elemental cubes within the pod so that there are enough working cubes to achieve the target
system/cube availability. The number of elemental cubes that are held back increases with the failure rate of an
individual server. Larger failure rates decrease the goodput because more cubes need to be held back to achieve the
target system availability. This can be seen in the left side of Fig. 2 for a single elemental cube slice (64 TPUs). As
the server availability increases from 99% to 99.9% (blue to green curves), the goodput increases because fewer
elemental cubes need to be held back. For a slice that is a single cube, no reconfiguration between cubes is used and
thus the goodput is the same for both the static and the reconfigurable topologies (dashed, solid lines).

Fig. 2: Left: Goodput/efficiency of the superpods as a function of slice size. Right: Relative model training speed up achieved by
optimizing slice shape. The baseline for comparison is the 16 × 16 × 16 cube performance.

For slice sizes larger than a single cube (64 TPUs), the total number of cubes required for a reconfigurable LWF
to achieve the target system availability is much smaller than the number of cubes required for a static fabric
because the reconfigurable LWF can swap out a bad elemental cube whereas a static configuration cannot. For slices
of the same size that are larger than 64 TPUs, this leads to the goodput for the static configuration (shown as dashed
lines) rapidly degrading compared to the goodput for the corresponding reconfigurable LWF (solid lines). As an
example, for a server availability of 99.9% (green curves), the static configuration can only support a 1024 TPU
slice size with 25% goodput, whereas the reconfigurable superpod can support 1024 slice size with 75% goodput.
Given the simplifying constraint that the slices are the same size, as the slice size increases, the overall goodput is
eventually dominated by the availability of the slice size and not by the individual server/host availability. At a slice
size of 1024, this leads to the convergence of the goodput for a server availability of 99.9% (green curve) with the
goodput for a server availability of 99.5% (red curve). Accounting for the hold back, three 1024 slices can be
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composed for either server availability leading to a goodput of 75% for both server/host availabilities. In contrast,
only two 1024 slices with a goodput of 50% can be composed for the lower server availability of 99% (blue curve)
because the hold back needed to achieve a 97% system availability for this case exceeds 1024 TPUs. At a slice size
of 2048, which is half the pod size of 4096, only one slice can be composed leading to a goodput of 50% regardless
of the server/host availability because some hold back is needed to achieve the target system availability for any
server/host availability less than 100%. In practice, a distribution of slice sizes running different size models is used.
For further availability improvements, the total number of OCS in the system can be reduced by adopting additional
WDM in the transceivers. One approach is to incorporate four additional wavelengths that are offset by 10nm from
the traditional CWDM4 grid used for the DCN (8 channel, 10nm grid) [1]. This optimization of interconnect for the
ML use case reduces OCS count by two, improving reliability of the LWF and the overall system.

Training Speedup: The reconfigurability of the LWF enables the creation of slices and provides significant
performance optimization for large-scale ML model training. In normal operation, the routing is deterministic and
set by the slice configuration. For a full-scale superpod containing 4096 TPU V4 chips, the dynamic
reconfigurability of the LWF enables changing the shape of the slice to any configuration between a symmetric slice
of 16 × 16 × 16 to a highly asymmetric slice of 4 × 4 × 256. We have found that this unique capability is especially
important for emerging transformer-based large language models (LLMs) [1]. Performance optimization for these
LLMs is critical, because these LLMs are very expensive to train, using hundreds to tens-of-thousands of computing
elements including TPUs or GPUs for months [4]. The right side of Fig. 2 shows that the reconfigurability of the
LWF unlocks more than a 3.3× performance uplift for production-scale LLMs, using an optimally configured 4096
node TPU V4 superpod compared to the static baseline 16 × 16 × 16 configuration which has the highest bisection
bandwidth among all possible static configurations of a 3D torus.

Another important observation from the right side of Fig. 2 is that there is no “one-size-fits-all” optimal slice
configuration for ML models. As can be seen, the symmetric 16 × 16 × 16 configuration of the LWF is optimal for
some LLMs, while asymmetric configurations are optimal for others. When training on large-scale ML systems,
LLMs rely on state-of-the-art model parallelism (including model pipelining) and data parallelism [1] to achieve
good training speed. The amount of inherent model and data parallelism for an LLM determines the optimal slice
configuration. In general, model size determines the amount of inherent model parallelism, while global batch size
determines the amount of inherent data parallelism.

The diverse dependence of ML model performance on the hardware configuration requires the size and
topology of the slice to be late binding after hardware is deployed. The ability of the LWF to match the shape of the
slice to the ML model is a unique and profound capability that not only achieves substantial performance gains for
ML models today but also offers a powerful form of reconfigurability for future ML models at scale.

Efficiency and Utilization: The combination of an elemental cube with only 64 TPU chips and the reconfigurability
enabled by the LWF leads to simplified slice scheduling, which increases overall efficiency. In the previous
generation TPU V3 pod [4], scheduling a 256-node slice required finding 256 physically contiguous nodes that were
idle and functional. For the TPU V4 superpod, the smaller 64-node block size in combination with the use of a
non-blocking LWF means that there are many more potential solutions to configure the LWF to a connect a set of
four idle, not-necessarily contiguous 4 × 4 × 4 elemental cubes to form a directly connected 256-node slice. In
addition, the scheduler is able to defragment the pods more effectively. In practice, we are able to run the TPU V4
fleet at a higher (>98%) utilization than earlier-generation systems despite the need to support 4× larger slices.

4. Conclusion
In this paper, we reviewed our ML superpod incorporating LWFs. Benefits of employing the LWF are higher
availability of larger systems/slices, training time reduction with slice shape optimization, as well as efficiency
benefits (bin packing) and improved deployment velocity. This was all done at a modest 6% increase in cost and 1%
increase in power compared to a static fabric [1].
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