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Abstract: We propose a low-complexity experimental model that predicts the OSNR of 

submarine links, considering both EDFA homogeneous and inhomogeneous responses. We 

tested it with random input pre-emphases, obtaining a mean RMSE of 0.29 dB after 24 spans 

when trained with simple single-span datasets. © 2024 The Author(s)  

 

1. Introduction 

With the advent of open submarine systems, accurate models for system design are increasingly necessary. Cable 

owners need a clear understanding of the latent cable capacity even before it is deployed and of the impact of a 

cable repair once deployed. It is well known that Erbium-doped fiber amplifiers (EDFAs) cause distortions in the 

signal power over the link. These distortions are partially mitigated by adding gain-flattening filters (GFFs) after 

each amplifier and periodic fixed corrections. However, even minor imperfections in the filtering can yield a 

significant distortion in the OSNR measured at the output since they accumulate over a cascade of amplifiers. This 

is why models that predict power variations over frequency are essential. 

       Many recent studies have been published to predict the EDFA gain response under non-flat input spectrum 

conditions [1-3]. Most of them focused on the homogeneous response (HR) of a single amplifier based on machine 

learning (ML) approaches. These techniques simply consider the system as a “black box”, requiring a large training 

dataset and time because of their lack of physical intuition. It is why we proposed in [4] a hybrid “white-box” 

model that leveraged the physical intuition given by the extended Saleh model [5] to reduce the required training 

data and complexity. We achieved a root-mean-square error (RMSE) of 0.05 dB in the prediction of a single 

amplifier gain, which, as far as we know, is the same error as state-of-the-art ML models (see Fig. 1a)), but with 

way lower complexity. We also predicted the gain response after a cascade of 12 spans with an RMSE of 0.15 dB. 

Beyond that, the model’s performance is compromised by the rise of inhomogeneous broadening effects such as 

spectral hole burning (SHB). Then, a second model was introduced [6] to account for these effects at high amplifier 

count, submarine distances. We followed the same “white-box model” philosophy that requires only a few simple 

experimental measurements to train it. Since inhomogeneous effects are way more important at longer distances, 

at this stage, we neglected the impact caused by homogeneous effects just for simplicity. We showed that this 

model provides good optical signal-to-noise ratio (OSNR) predictions at typical submarine distances with a mean 

RMSE of 0.5 dB. Each model shows low prediction error in their domain of validity, but it slightly increases at 

middle distances because both homogeneous and inhomogeneous effects have comparable contributions, so none 

of them can be neglected and, furthermore, every parameter mismatch has a large impact. Fig.1a) summarizes all 

the mean RMSE of the discussed gain models (GM) versus amplifier count. 

       In this paper, we present a generalized model that can predict the OSNR dependency on wavelength of a 

submarine link considering most of the effects that cause frequency distortions, such as the EDFA homogeneous 

and inhomogeneous effects, as well as the imperfect response of GFF and the span losses. We tested it over 200 

random input spectra in a 24 spans submarine link under realistic conditions, achieving a mean RMSE of 0.29 dB 

in OSNR estimation. We then stressed it by applying a 6 dB loss at the input, simulating the behavior after a severe 

cable failure, and the model kept similar RMSE values. Another novelty shown in this paper is that we have 

experimentally isolated for the first time the inhomogeneous response (IR) of pre-emphasized channels at the input 

of a single EDFA by using the knowledge obtained with homogeneous model. These measurements are later used 

to train the inhomogeneous contribution of our generalized model. It is a step forward with respect to [6], which 

was trained using the response of several EDFAs to average out the residual HR.  

 
Fig. 1a) RMSE vs number of amplifiers state-of-the-art models. b) Experimental setup. c) Relative input power spectral density in dB. 
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2. Experimental set-up and training 

The experimental set-up is shown in Fig.1b). We fulfilled 36nm of bandwidth using a noise source that was shaped 

with a wavelength selector switch to emulate a 75-GHz noise channel frequency grid. Every channel had 20 GHz 

of bandwidth to enable access to noise level (see Fig.1c). Then, the noise channels were boosted before entering 

the device under test (DUT). A variable optical attenuator (VOA) was placed before the DUT to control its total 

input power. With a 95/5 coupler, we recovered the input signal. Finally, this signal, together with the output one, 

entered an optical switch connected to an optical spectrum analyzer (OSA). In all the conducted experiments, the 

DUT was put into a controlled temperature room to simulate seabed temperature conditions. 

       First, we calibrate our model using a single EDFA as DUT. To isolate the HR of the EDFA under test, we 

characterize its gain when operating with a flat input spectrum at different total input powers 𝑃𝑖𝑛, from 0 to 12 

dBm. This allows us to build a homogeneous EDFA gain model, converting any input spectrum into a flat input 

spectrum with an adjusted equivalent input power yielding the same EDFA population inversion and gain, as in 

[4]. Fig. 2a) shows the measured EDFA gains used to train the model once the expected contribution of the GFF 

is removed. The dashed curve corresponds to the gain at nominal power 𝑃𝑟𝑒𝑓 , which will be denoted as the 

reference gain 𝐺𝑟𝑒𝑓 . To measure the inhomogeneous contribution, we measured the gain distortion induced by 

every channel as in [6]. However, as discussed in [4] and shown in Fig. 2c) of [6], when we apply a channel pre-

emphasis, homogeneous effects are also stimulated. The novelty of this paper is that we directly isolated the IR of 

a single EDFA. In the presence of a channel pre-emphasis, we adjust the total input power to match the equivalent 

power corresponding to the flat reference conditions. In these conditions, the HR is minimized. To ensure that we 

obtained the closest population inversion to the flat input case, we adjusted the VOA attenuation by a gradient 

descent algorithm to minimize the differences between the measured gain and 𝐺𝑟𝑒𝑓 . Fig.2b) shows results without 

applying the power adjustment and the IR isolated with it. Later, we verified the match between the experiment 

without power adjustment and the built cascade of homogeneous + inhomogeneous models in Fig.2b). Finally, we 

smoothed the predicted IR to remove quantization noise coming from the OSA. We compared the exploitation of 

the averaged IR after the 24 spans cascade and scaled to a single amplifier or the use of the simple technique of a 

moving average. Both ways yield a similar performance in the model implementation. 

       Then, we tested our model in a submarine link using a submarine repeater and a 12-fiber pairs tube spool. 

Every span comprised an EDFA equipped with a GFF, followed by a 70 km optical fiber with conventional 

parameters i.e., 0.155 km/dB of attenuation, 21 ps/(nm·km) of chromatic dispersion and 110 µm² effective area. 

The fiber was directly spliced to the EDFAs and vice versa. Fiber spans were inside a 12-fiber pairs tube spool 

and amplifiers operated at constant pump current, reproducing realistic conditions. We selected 24 spans because 

we wanted to work in a region where neither the HR nor IR are negligible and, indeed, this number is representative 

of the number of spans before a second order shape equalization in a submarine section. The fiber transfer function 

was obtained using an experimental characterization and the stimulated Raman scattering shape was estimated 

using the formula proposed in [7]. Fig. 2c) shows the average response of the 24 fibers used.  

 
Fig. 2a) EDFA gain under flat input conditions and different input powers. b) Symbols: measured HR + IR and isolated IR. Solid: 

experimental IR with homogeneous gain estimated by the model. Dashed: smoothed curves. c) Fiber characterization + estimated SRS.  

3. Generalized model for gain prediction of a submarine link 

We propose the association of both homogeneous and inhomogeneous models presented in references [4] and [6], 

respectively, to predict the output spectrum of a cascade of 24 identical amplifiers-fibers. Firstly, we assume that 

both contributions can be treated independently and added at span level. Hence, we have that the output spectrum 

of the kth span is: 𝑝𝑜𝑢𝑡
(𝑘) (𝜆) = 𝑝𝑖𝑛

(𝑘)(𝜆) + 𝐺𝐻
(𝑘)

(𝜆, Δ𝑝(𝑘)(𝜆)) + 𝐺𝐼
(𝑘)(𝜆, Δ𝑝(𝑘)(𝜆)) + 𝐻𝑔𝑓𝑓(𝜆) + 𝐻𝑓𝑖𝑏𝑒𝑟(𝜆), where 𝑝𝑖𝑛  

is the input spectrum, 𝐺𝐻 is the homogeneous gain (computed with model in Ref. [4]), 𝐺𝐼 is the inhomogeneous 

response (computed with model in [6]), 𝐻𝐺𝐹𝐹  is the GFF transfer function, 𝐻𝑓𝑖𝑏𝑒𝑟  is the fiber transfer function and 

Δ𝑝(𝑘)(𝜆) is the spectrum pre-emphasis, all in dB units. In this paper, the look-up tables used to obtain 𝐺𝐻(𝜆) and 

𝐺𝐼(𝜆) have been trained with the data of a single EDFA, contrary to [6] where a cascade of spans were used. This 

allows the iterations of only one span and relax some assumptions done in [6], such as the one that the 𝐺𝐼 was set 
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to zero by definition for the flat input. Finally, note that both gains are impacted by each other, since they depend 

on the power distortion from the previous iteration that, in turn, depends on both homogeneous and inhomogeneous 

contributions.  

4. Experimental validation 

In this section, we tested the generalized model when applying over 200 random input spectra in the submarine 

link under test. When computing the mean root-mean-square error (𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ) in the estimation of the output power 

spectrum over ~150 random inputs at nominal power, we obtained a 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  = 0.49 dB after 24 spans. Fig. 3a) 

shows the individual RMSE for every random pre-emphasis and the mean values when considering only 

homogeneous, only inhomogeneous and both effects. The 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  error provided by each model separately is 0.69 

dB and 0.65 dB respectively. Notice then that the generalized model permitted to reduce the 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  by a factor of 

27% because of the interplay between the two models. Finally, we repeated the same test but now predicting the 

OSNR at the output of the submarine link obtaining a 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  = 0.29 dB after 24 spans. 

       Then, we stressed the novel model by adding a 6 dB loss in the total input power, simulating a very pessimistic 

cable failure since it corresponds to twice the typical loss measured in a deep sea cable break. As an example, Fig. 

3b) shows the power spectrum and OSNR prediction for a given input random spectrum, which is then compared 

with the pre-emphasis unaware model. We clearly observe that the latter is unable to predict the impact of the input 

pre-emphasis and the 6 dB loss, with a RMSE greater than 1 dB in the output spectrum. In turn, our model achieves 

RMSE values around 0.45 dB in both power spectra and OSNR prediction for this example. Finally, Fig. 3c) shows 

the histogram of the RMSE for the OSNR estimation computed over all random inputs for both nominal and failure 

simulation cases. The generalized model can predict the impact of this cable failure with a 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  of 0.53 dB in 

the power spectrum prediction and 0.46 dB in the OSNR over 50 random input spectra. 

 
Fig. 3a) RMSE and mean value for every pre-emphasis in the prediction of the power spectra considering homogeneous + inhomogeneous 

effects, only homogeneous and only inhomogeneous at nominal total input power case. b) Power and OSNR prediction for a random input at 

6dB lower than nominal input power. c) Histogram of RMSE in the OSNR prediction at nominal power 𝑃𝑟𝑒𝑓 (blue) and 6dB lower (orange). 

5. Conclusion 

We first validated an experimental technique to isolate the inhomogeneous response of a single EDFA by using 

the knowledge gained from the homogeneous model. Secondly, we generalized our model, so it can predict the 

performance of a submarine link accounting for both homogeneous and inhomogeneous EDFA effects, as well as 

other span imperfections. It was trained with a very basic dataset obtained experimentally with a single EDFA 

characterization. Then, we tested it in a submarine link composed of 24 spans in realistic conditions with random 

input spectra at nominal power and then emulating a cable failure by adding a 6 dB loss in the total input power. 

We showed respectively 0.29 dB and 0.46 dB of  𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  averaged over all the random inputs. Finally, we showed 

that the interplay between the two EDFA models permitted to reduce the 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  in a factor of 27%.  
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