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Abstract: We experimentally demonstrate Raman amplifier optimization with fast pump
deviation inference in different scenarios. Using less than 3 new data, accurate gain gener-
ation is achieved with low root mean square error (<0.1 dB). © 2024 The Author(s)

1. Introduction

Opening new wavelength bands has proved to be a promising solution for expanding the capacity of optical
networks [1]. Raman amplifiers (RAs) are considered right away to amplify multi-band signals for their low
noise figure [2] and potential to provide arbitrary gain profiles [3]. Reasonable configuration of pumps is the
prerequisite for the RA to generate specific gain profiles. However, the complex interactions between pumps and
signals pose a great challenge to the configuration, especially with the increased number of pumps in multi-band
optical networks. Recently, machine learning (ML) methods such as neural networks (NNs) have been widely
adopted to model RAs [4] and inverse system models are trained to directly predict the configuration of Raman
pumps and achieve target gain profiles in a controlled way [5, 6].

However, ML-based RA models rely on the training data and will deteriorate when the deployment scenario
differs from the data collection scenario. Similar problems are studied in terms of Raman gain prediction, a general
model is proposed to achieve accurate gain prediction in scenarios with different fiber lengths and fiber types [7].
However, a large dataset containing data from various scenarios is needed for the general model training. The
data collection is time-consuming and the general model cannot perform well in the scenario beyond the training
dataset. As for the Raman gain generation, there is still no universal method for accurately generating specific gain
profiles in various deployment scenarios.

In this paper, an online optimization framework is proposed to achieve fast and accurate gain generation in
various deployment scenarios. Only a few new data (1∼3 data) are needed for the optimization and the framework
is applicable to various scenarios with different pump propagating direction, fiber lengths and input signal powers.
The framework consists of a historical training model and an online adjustment module (OAM). The historical
training model is used to assist a two-stage process to achieve fast pump deviation inference (FPDI) and the OAM
iteratively updates the pump configuration according to the pump deviations. We experimentally validated the
proposed framework in 7 different scenarios and various target gain profiles ranging from 7 dB to 20 dB are gen-
erated. Results show that, in all scenarios, the maximum root mean square error (RMSE) between the target gain
profiles and the generated gain profiles is reduced to <0.1 dB within 3 optimization iterations. Compared with no
optimization, 96.2% improvement in gain generation accuracy is achieved, demonstrating the great performance
of the proposed framework.

2. Online Optimization Framework with Fast Pump Deviation Inference

The optimization is to find a set of pump setting parameters (PTAR) to achieve the target gain profile (GTAR) in the
deployment scenario. As the number and wavelength of pumps are usually fixed in commercial RA modules, the
power of pumps is used as the optimization parameter.

The historical training model contained in the framework is constructed by the neural network and learns the
mapping from Raman gain profiles to pump powers [6] in a given scenario which is defined as the modeling
scenario. The key of the proposed framework is the fast pump deviation inference (FPDI) which infers the pump
deviation between current pump settings and the pump settings of achieving the target gain profile in the deploy-
ment scenario. It is a two-stage inversion inference process assisted by the historical training model. The first stage
of FPDI is to infer the pump configuration difference between two gain profiles in modeling scenarios based on
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Scenarios Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5 Sce. 6 Sce. 7 Sce. 8

Pump Direction Forward Backward Backward Backward Forward Forward Forward Forward

Fiber Length [km] 75 75 60 40 60 60 40 40

Input Power [dBm] -30 -30 -15 -15 -15 -30 -30 -15

Tab.1. The settings of 8 constructed scenarios.

Fig. 1. Process of the online optimization framework: (a) the historical training model and the online
adjustment module (OAM); (b) experimental setup for constructing different scenarios.

the historical training model. The second stage is to reflect the pump configuration difference from the modeling
scenario to the deployment scenario and infer the pump deviations. The reflection process in the second stage is
based on the similarity of RA mappings in different scenarios. An online adjustment module (OAM) iteratively
updates pump configurations according to the pump deviation. The detailed process of the framework is shown in
Fig. 1 and can be divided into 3 steps:

Step1: Feed the target gain profile GTAR to the historical training model, and obtain the initial pump settings
P(0) = {p(0)1 , p(0)2 , ...p(0)N }. N is the number of pumps.

Step2: Send P(0) = {p(0)1 , p(0)2 , ...p(0)N } to OAM, and initialize PTAR = {pTAR
1 , pTAR

2 , ...pTAR
N } with P(0).

Step3: Iterations. Step (3-1): Configure multiple pumps in RA in the deployment scenario based on the current
PTAR. Step (3-2): Measure the actual on-off gain profile G(i) achieved with the current pump configuration and feed
G(i) to the historical training model. Step (3-3): Obtain the predicted pump configuration P(i) = {p(i)1 , p(i)2 , ...p(i)N }
of G(i) through the historical training model and send it to OAM. Step (3-4): OAM updates PTAR by:

pTAR
n = pTAR

n −αn(p(i)n − p(0)n ),n = 1,2, ...N (1)

αn is defined as the adjustment coefficient and set as pTAR
n /p(0)n , and it evolves with the updates of PTAR. The root

mean square error (RMSE) between G(i) and GTAR is used as the metric for assessing optimization performance.
Step 3 is executed iteratively until the number of iterations is reached or the RMSE is lower than the set threshold.

3. Experimental Setup and Results

The C+L-band optical system from 187.2 THz to 196.2 THz with 90 channels (ITU-T, 100GHz) is considered. 8
transmission scenarios listed in Tab. 1 are constructed in Fig. 1(b). We develop a multi-pump RA and it contains 6
pumps (1425 nm∼1500 nm) with adjustable powers and a control module embedded with the proposed optimiza-
tion framework. An amplified spontaneous emission (ASE) source is used to generate C+L-band optical signals.
A variable optical attenuator is connected after the ASE source to adjust the input optical signal power. Standard
single-mode fibers(SSMF) with different lengths(15 km, 20 km,40 km) are selectively connected to the system. At
the fiber output port, an optical spectrum analyzer(OSA) is used to capture the power spectrum. The connection
position of RA depends on the pump propagating direction. In backward-pumped scenarios, an isolator must be
connected to the fiber input port to protect the ASE source.

As for the historical training model construction, 2300 samples are collected in Sce. 1. 1300 samples are used
for model training and 1000 are used for model testing. Each sample contains the power of 6 pumps (range from
0 mW to 260 mW) and the corresponding on-off gain profile. The model consists of 3 layers, each with 200
nodes and employing the tanh activation function. Training is performed using gradient descent (GD) with the
Adam optimizer. 1000 sets of pump powers are predicted by the model after feeding 1000 testing gain profiles. In
Sce. 1, 1000 actual generated gain profiles achieved by corresponding predicted pump powers are measured. The
mean and standard deviations (µ ±σ ) of the root mean square error (RMSE) between the testing gain profile and
the generated gain profile is (0.113 ± 0.063dB), indicating the high-accurate gain generation performance of the

W2B.24 OFC 2024 © Optica Publishing Group 2024

Disclaimer: Preliminary paper, subject to publisher revision



0 25 50 75 100
0.0

0.3

0.6

0.9

1.2

R
M

SE
 [d

B]

Cases

 No Optimization  iter = 1
 iter = 2  iter = 3

(b) Backward,SSMF-75km, -30dBm

0 5 10 15 20
0.0

0.3

0.6

0.9

1.2

R
M

SE
 [d

B]

Cases

 No Optimization
 iter = 1  iter = 2  iter = 3

 No Optimization
 iter = 1  iter = 2  iter = 3

 No Optimization
 iter = 1  iter = 2  iter = 3

(a) Backward,SSMF-75km, -30dBm

0 5 10 15 20
0.0

0.5

1.0

1.5

R
M

SE
 [d

B]

Cases
0 5 10 15 20

0.00

0.05

0.10

0.15

R
M

SE
 [d

B]

Cases

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

R
M

SE
 [d

B]
Cases

 No Optimization 
 iter = 1  iter = 2  iter = 3

0 5 10 15 20
0.0

0.3

0.6

0.9

R
M

SE
 [d

B]

Cases

(c) Backward,SSMF-60km, -15dBm (d) Backward,SSMF-40km, -15dBm (e) Forward,SSMF-60km, -15dBm

(f) Forward,SSMF-60km, -30dBm (g) Forward,SSMF-40km, -30dBm (h) Forward,SSMF-40km, -15dBm

0 5 10 15 20
0.0

0.5

1.0

1.5

R
M

SE
 [d

B]

Cases

 No Optimization
 iter = 1  iter = 2  iter = 3

 No Optimization
 iter = 1  iter = 2  iter = 3

0 1 2 3 4 5
0.0

0.3

0.6

0.9

1.2

R
M

SE
 [d

B]

Iterations

 ave(RMSE)  max(RMSE)

( iterations = 3, 
   max(RMSE) = 0.078 dB )

Fig. 2. (a) The variation of the average (blue) and the maximum (red) RMSE with optimization
iteration in Sce. 2; (b)-(h) the RMSE of each case with optimization iterations of 0, 1, 2, and 3 in
Sce. 2∼Sce. 8.

historical training model under Sce. 1.
We validate the performance of the proposed framework in the scenario with different pump propagating direc-

tion, the generation of 100 target gain profiles ranging from 7 dB to 20 dB are used as cases in a backward-pumped
scenario (Sce.2). The optimization metric is set as the RMSE between the target gain profile and the generated
gain profile. Fig. 2(a) shows the variation of the maximum RMSE and the average RMSE among 100 cases with
optimization iteration. In the third iteration, the RMSE of all cases are reduced to <0.08 dB. Fig. 2(b) shows the
RMSE of 100 cases with optimization iterations of 0, 1, 2, and 3, respectively. The black line (iterations = 0)
represents the gain generation performance of the historical training model in Sce. 2 and the RMSE of some cases
even exceed 1dB, indicating the model degradation in Sce. 2. Compared with no optimization, the gain generation
accuracy in Sce.2 is significantly improved by 96.1% after 3 iterations.

To validate that the framework is applicable to various scenarios, further validation is conducted in Sce. 3∼Sce.
8. 120 cases are tested and the results are shown in Fig. 2(c)∼Fig. 2(h). Compared with no optimization, the gain
generation accuracy are improved by 96.0%, 90.7%, 98.8%, 96.5%, 67.7%, and 97.7% after 3 iterations in Sce.
3∼Sce. 8, respectively. The insignificant improvement in Sce. 5 (Fig. 2 (g)) is due to the RMSE before optimization
is already low (below 0.2 dB). Nonetheless, further improvement has been achieved through our framework.

Overall, within 3 iterations, the RMSE of all cases are reduced to <0.1dB and the average RMSE is improved
by 96.2% in scenarios from Sce. 2 to Sce. 8, demonstrating the effectiveness of the proposed framework in fast
multi-pump RA optimization.

4. Conclusion

We propose an online optimization framework with fast pump deviation inference (FPDI) and experimentally
validate it in 7 scenarios with different pump propagating direction, fiber lengths and input signal powers. Results
show a low RMSE ( <0.1 dB) is achieved within 3 iterations in the generation of various target gain profiles
ranging from 7 dB to 20 dB, and the accuracy is improved by 96.2% after using the proposed framework.
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