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Abstract: We propose a reinforcement-learning-optimized nonlinear physical diffractive neural 

network, which can simultaneously perform OAM-mode and LP-mode conversion with Gaussian 

noise removal. The PSNR and SSIM of the converted modes reach 27.94 dB and 0.838, 

respectively. © 2024 The Author(s) 

1. Introduction 

Optical fibers have emerged as a pivotal technology in modern communications, enabling long-haul high-bandwidth 

data transmission [1-3]. Few-mode fibers typically support a few guided modes, and each mode is characterized by a 

distinct distribution of light intensity and phase over the cross-section of the fiber [4]. The methods to efficiently 

control and convert these guided modes are vital to various applications, from fiber-based sensors to high-capacity 

data transmission systems. Early devices for mode conversion, including mode converters and mode multiplexers 

are often complex, bulky, and expensive [5,6]. The recently emerging artificial intelligence techniques have 

provided novel solutions to various complex problems in optics [7-9]. In particular, diffractive deep neural networks 

(D2NN) [10], which have all-optical machine learning framework by harnessing the principles of wave propagation 

and interference, have shown great potential in addressing intricate optical tasks, including the mode conversion. 

Pioneering work on all-optical D2NNs machine learning framework shows the deep learning methods to design 

successive diffractive layers that are physically fabricated to perform statistical inference based on a trained task 

[10]. However, most D2NNs only achieve image-to-label tasks, e.g., image classification, by setting several specific 

areas on the output plane as image category labels [11,12]. Although D2NN can reconstruct images, it is still an open 

question that how much the reconstructed image quality can be improved using D2NN. 

Here, we build a new all-optical D2NN, named nonlinear physical diffractive neural network (NPDNN), which 

can simultaneously transform 6 LP-mode profiles and 3 orbital angular momentum (OAM) [5] mode profiles to each 

other. While accomplishing mode conversion, the proposed NPDNN can significantly reduce the speckle effects 

induced by Gaussian noise. In the absence of noise, the NPDNN achieves a mode conversion with a peak signal-to-

noise ratio (PSNR) [13] of 31.84 dB, a structural similarity index (SSIM) [14] of 0.897 and a learned perceptual 

image patch similarity (LPIPS) [15] of 0.074. When Gaussian noise becomes strong with a mean and standard 

deviation both less than 0.5 added, the NPDNN still achieves remarkable mode conversion results with a slightly 

smaller PSNR of 27.94 dB, an SSIM of 0.838 and an LPIPS of 0.143. 

2. NPDNN configuration, results of mode conversion and mode denoising 

We form a deep Q-learning (DQN) optimized 3D-printed NPDNN for multifunctional mode conversion, as shown  
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Fig. 1. Schematic of DQN-optimized NPDNN for multifunctional mode conversion. (a) An example was to 

reconstruct 3 modes (Denoising in mode conversion of the LP11a, LP21b, and OAM1 modes to the LP11b, LP01, and 

OAM2 modes, respectively) using NPDNN. (b) DQN reinforcement learning algorithm for optimizing NPDNN. 
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in Fig. 1. To verify the effectiveness of the NPDNN, we utilize the NPDNN conversion of three input modes to the 

corresponding three output modes first. For all studies in this paper, the NPDNN we constructed comprises 5 

diffractive layers of phase plates at an incident wavelength of 1.55 μm. These phase plates are spaced 30 mm apart 

from each other, and following nonlinear function layer after each plate. Each phase plate has the size of 80 mm×80 

mm and is further divided into 256×256 cells. In the DQN optimization step, the phase of each cell is the 

hyperparameter, and the NPDNN serves as the optimization environment to interact with the DQN agent. 

Meanwhile the rewards, states, and actions of the DQN agent are loss function (𝓛), phases of all cells, and changes 

of phase in NPDNN, respectively. 

To train the NPDNN to achieve multifunctional 9-mode conversion by leveraging the NPDNN, we create a 

dataset comprising 13000 data samples, encompassing 9 different modes, including 6 LP-modes (LP01, LP11a, 

LP11b, LP21a, LP21b, and LP02) and 3 OAM-modes (OAM1, OAM2, and OAM3). In typical optical fiber 

communication systems, noise is introduced by mode generator, which results in input modes experiencing varying 

degrees of noise. To mitigate Gaussian noise N(μ, σ2) effects, we set noise with different (μ, σ2) of fiber modes in the 

dataset to investigate the performance of the NPDNN on denoising in conjunction with multifunctional mode 

conversion. This dataset is divided into 10000 samples as the training set and the rest 3000 samples as the test set. 

The training set includes input modes and target modes as data pairs, as shown in Fig. 2. 
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Fig. 2. Dataset description. (a) The 9 input modes with certain Gaussian noise. (b) The noiseless 9 target modes. The 

input modes and the target modes are the data pairs used for training. For example, the LP01 mode within the red box 

in Fig. 2(a) is transformed into the corresponding LP11a mode within the red box in Fig. 2(b) by using the NPDNN. 

(c) In the absence of target modes in the test set, the mode conversion and denoising for the input modes are 

produced simultaneously by the trained NPDNN. 

Our objective is to transform the input modes into the target modes, and the NPDNN enables to achieve perfect 

conversion for every detail and pixel of modes. Compared to the tasks of image classification, our task places 

significantly higher demands, particularly requiring it to possess nonlinear expressive capabilities. Consequently, we 

introduce two types of nonlinear activation functions [17,18] with the capability of nonlinear phase modulation as 

nonlinear activation layers placed after each diffractive layer. These two functions can achieve nonlinear activation 

functions like Tanh and Relu, named as OTanh and ORelu in optical domain, respectively. The performance is 

shown in Fig. 3(a). The loss function for the training process is defined as the sum of 𝓛2, 𝓛MS_SSIM, and 𝓛FSIM (Please  
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Fig. 3. (a) Two types of all-optically nonlinear activation functions. (b) For multifunctional 9-mode conversion by 

NPDNN, the loss (𝓛) over epoch is shown by different algorithms. Compared to other algorithms, the DQN 

algorithm with the OTanh nonlinear layers has the fastest convergence speed and the minimum loss. (c) In the case 

of DQN+OTanh, the LP11b mode with Gaussian noise of N(0.5, 0.52) gradually evolves into the noiseless LP02 mode 

as the epoch increases. (d) 3D distribution of the loss with respect to wavelength and exponent of different distance. 
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Table 1: Loss terms ablation studies.                Table 2: Image metric indicators under different noise levels. 

LPIP  ↓  I  ↑P NR ↑Loss Terms ~  N(0.5, 0.52)

0.3620.58816.80\ (Input-Target)

0.2650.78918.14 1

0.2370.83019.08 2

0.1400.82121.12 2+ MS_SSIM

0.1780.82420.38 2+ FSIM

0.1130.83827.94 2+ MS_SSIM+ FSIM
      

LPIP  ↓  I  ↑P NR ↑Gaussian Nosise

Out-TarIn-TarOut-TarIn-TarOut-TarIn-TarNoise Levels

0.0740.1960.8970.80731.8416.91N(0.0, 0.02)

0.0880.2820.8400.78627.4114.14N(0.0, 0.52)

0.0970.2560.8640.79729.5215.90N(0.5, 0.02)

0.1430.3620.8380.78827.9414.80N(0.5, 0.52)

0.3850.6630.6090.48522.758.68N(0.0, 1.02)
 

(* The “↑” represents that a higher value is better for the corresponding metric indicators (also apply to “↓”)). 

refer to [16] for the details). The impact of different algorithms and nonlinear layers on the loss function is 

compared (SGD, Adam, and RMSProp), and the results are shown in Fig. 3(b). In addition, LP11b mode gradually 

evolves into LP02 mode as the epoch increases, are shown in Fig. 3(c). Fig. 3(d) shows that the loss of NPDNN is 

insensitive to wavelength and distance of layers, making it easy to optimize and manufacture. 

We have conducted ablation studies on the loss function, as shown in Table 1. The maximum and second 

maximum values for each metric are indicated by a bold and an underline font, respectively (also apply to Table 2). 

Our loss functions for PSNR, SSIM, and LPIPS have the best measurement results. In Table 2, we provide a 

summary of PSNR, SSIM, and LPIPS at different noise intensities. The “In-Tar” and “Out-Tar” in Table 2 represent 

indicator measurement results of the input modes and output modes with target modes, respectively. In addition, we 

demonstrate the mode conversion performance of LP21a and OAM2 modes at different noise levels, as shown in Fig. 

4. It is evident that even in the presence of strong noise in input modes, the trained NPDNN can still achieve mode 

conversion and mode denoising simultaneously, with the PSNR of output modes more than 20 dB. 
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Fig. 4. Mode conversion of the LP21a mode and the OAM2 mode to the LP21b mode and the OAM3 mode, as 

examples respectively, under different noise levels. The values of the evaluator PSNR are given. 

3. Conclusion 

We have proposed a DQN-optimized nonlinear physical diffractive neural network, which can simultaneously 

perform multifunctional mode conversion and denoising. The simulations show that, when the noise coefficient is 

less than 0.5, the PSNR, SSIM, and LPIPS can reach 27.94 dB, 0.838, and 0.143, respectively. The outcomes of our 

proposed NPDNN have the potential to pave the way for greatly improving mode manipulations, leading to more 

efficient and high-quality optical communications. 
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