
Machine Learning-Driven Low-Complexity Optical Power 
Optimization for Point-to-Point Links 

Isaia Andrenacci*,1,2, Matteo Lonardi2, Petros Ramantanis2, Élie Awwad1, Ekhiñe Irurozki1, Stephan 
Clémençon1, Paolo Serena3, Chiara Lasagni3 , Sébastien Bigo2, Patricia Layec2 

1Télécom Paris, 19 Pl. Marguerite Perey, 91120 Palaiseau, France, 2Nokia Bell Labs, 12 Rue Jean Bart, 91300 Massy, France, 
3University of Parma, Parco area delle Scienze 181/A, 43124, Parma, Italy 

*isaia.andrenacci@nokia.com 

Abstract: We propose a strategy to dynamically adjust transmitted power solely based on the 
analysis of performance fluctuations due to polarization-dependent loss. We show that our method 
converges faster to optimum compared to a standard approach. © 2024 The Author(s) 

1. Introduction 
In today's optical communication networks, in order to accommodate the increasing capacity demand while reducing 
the cost per transmitted bit, it is necessary to abandon the static set and forget approach that relied on high margins. 
In response to this challenge, building a real-time, high-fidelity digital replica of the optical network, also known as a 
digital twin (DT), could allow new designs with enhanced efficiency through margin reduction. Besides, even if a DT 
is not available [1], a closed loop optimization can be achieved by dynamically adjusting some network parameters 
and simultaneously verifying by measurements the optimization gains at the receiver end. In this case, machine 
learning (ML) can play a crucial role in minimizing computational costs. 
In this paper, we propose a low-complexity, ML-driven strategy, designed to optimize transmitted optical power, 
harnessing only signal-to-noise ratio (SNR) fluctuations due to polarization-dependent loss (PDL). This approach 
builds upon the framework presented in [2], where an ML classifier was used to identify the dominant noise regimes, 
i.e., linear, dominated by amplifier spontaneous emission (ASE) noise, or nonlinear, dominated by Kerr nonlinearity. 
Specifically, we leverage, in these regimes, the shape variations of the SNR probability density function (PDF) [3] to 
quickly attain the optimal power, often referred to as the nonlinear threshold (NLT) [4]. Applying a regression on the 
transmitted power might be challenging without knowledge of additional network parameters since, within a specific 
regime, the normalized SNR PDFs exhibit remarkable similarities despite the power differences (e.g., see Fig 4 in 
[2]). We propose to mitigate the aforementioned challenge by combining two ML classifiers. We demonstrate the 
potential of our strategy to reach the optimal power regime with a reduced number of iterations compared to an ML-
free method relying solely on average SNR, all while maintaining optimal performance levels. 
2. Methodology 
In Fig. 1 a), we illustrate our closed-loop, ML-driven, input power optimization scheme, for a typical terrestrial link. 
For simplicity, we assume the system to be homogeneous in terms of fiber types/lengths, while we assume all 
amplifiers to operate in “constant gain” mode, perfectly compensating for losses. At the transmitter (TX), we employ 
a fixed grid of 21 channels using Gaussian modulation, while the input power 𝑃௜௡ [dBm] is adapted to maximize 
average SNR. The receiver (RX) calculates the standardized moments of the monitored SNR samples (𝑆), i.e., mean, 
𝜇 = E[𝑆], variance, 𝜎ଶ = E[(𝑆 − 𝜇)ଶ ], skewness, 𝛾 =  E[(𝑆 − 𝜇)ଷ ]/𝜎ଷ, and kurtosis, 𝜅 = E[(𝑆 − 𝜇)ସ ]/𝜎ସ. Then, 
these moments are used in an input features vector 𝒙 = [𝜇, 𝜎ଶ, 𝛾, 𝜅] of two ML classifiers, one fine (A) and one coarse 
(B). We underline the difference with respect to [2] where the entire normalized PDF was used as an input feature 
vector. Our choice to use moments was made to demonstrate that they sufficiently capture various PDF shapes [3]. 
Moreover, this definition simplifies ML algorithm's complexity and enhances its interpretability. Each classifier 
identifies the power range 𝑌ௗ with 𝑑 = {𝐴, 𝐵} where 𝑃௜௡  is situated. We defined three ranges as follows:1) “𝐿𝐼𝑁ௗ” 
with 𝑃௜௡ − 𝑁𝐿𝑇 < 𝛿ௗ, 2) “𝑁𝐿𝐼𝑁ௗ” with 𝑃௜௡ − 𝑁𝐿𝑇 > 𝛿ௗ and, 3) “𝑀𝐼𝐷ௗ” with |𝑃௜௡ − 𝑁𝐿𝑇| ≤ 𝛿ௗ . Furthermore, these 
classifiers provide the prediction probability, defined as fௗ(𝒙) ≜ P r (Yௗ = 𝑦 |𝐗 = 𝒙). The classifier A distinguishes 
itself from B due to its narrower MID range (i.e., 𝛿஺ < 𝛿஻). As it will be discussed next, variable corrections 𝛥𝑃 are 
applied, according to the classifiers’ outputs, i.e., the power ranges Yௗ and the associated probabilities fௗ(𝒙). 
The supervised ML classification algorithms were trained with optical link simulations using the enhanced Gaussian 
noise (EGN) model extended to account for PDL [3]. The EGN dataset consists of 2 ⋅ 10ସ  different PDFs of the SNR 
for each 𝑃௜௡ and for each different simulated scenario. Each PDF has been derived from 10଺ SNR samples. 
Constructing this representative EGN dataset involved exploring various scenarios of TX and link parameters. At TX, 
the transmitted signals were set to either 49 GBd with 50 GHz spacing or 69 GBd with 75 GHz spacing, while the 𝑃௜௡  
ranged from −10  to +10 dBm with a 0.5 dB step size. One reconfigurable add and drop multiplexer (ROADM) was 
placed after the TX in add mode. The signal was detected after an arbitrary number of spans (12, 15, 18, and 21) of 
standard single-mode fiber (SSMF) and noisy EDFAs, with all simulation parameters reported in Fig. 1 a). The in-
line ROADMs featured two wavelength selective switches (WSSs), one in add mode and the other in drop mode, 
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positioned in two 

configurations, indicated by the blue switch in Fig. 1 a). The “regular” position of the switch corresponds to a ROADM 
inserted every three spans, while the “random” position corresponds to a ROADM placed every span with a 30% 
probability. At the RX, a ROADM is placed in drop mode. To reveal different PDFs shapes, we chose PDL in each 
WSS with values drawn from two different distributions: a Uniform (𝑈) ranging from 0.1 to 1 dB and a Chi-square 
(𝜒²) with three degrees of freedom, having a mean of 0.21 dB and a probability of exceeding 0.8 dB set at 1.05%. For 
each scenario, the EGN simulation was repeated with twenty different PDL values. 
The collected data was used to create the datasets for the two ML classifiers with each input feature vector 𝒙 labeled 
into the corresponding range Yௗ. Classifier A is configured with 𝛿஺ = 0.5 dB and B with 𝛿஻ = 2 dB. This process 
resulted in two labeled datasets, each containing a total of 2 ⋅ 10ସ  instances including all the simulated configurations. 
For both A and B, we employed the random forest [5] algorithm and we used the macro F1 score [6] as performance 
metric due to imbalanced Yௗ distributions. We divided our datasets into an 80% portion for the training and the 10-
fold cross-validation strategy. The remaining 20% of the datasets were used to evaluate the test macro F1 score. 
Fig. 1 b) depicts the power adjustment Δ𝑃 taken from the ML optimization. The white boxes represent cases where 
both classifiers agree on the ranges, but this does not guarantee correct classification, as simultaneous errors can occur. 
If the 𝑀𝐼𝐷ௗ  range is detected by both classifiers, then 𝛥𝑃 = 0 and optimum power range is assumed for the system. 
If classifiers agree on either the 𝐿𝐼𝑁ௗ or the 𝑁𝐿𝐼𝑁ௗ range, power adjustments are made by a correction Δ𝑃 = 𝑟 ⋅ 𝑐 ⋅ 𝑃 
where 𝑃 is set equal to half the 𝑀𝐼𝐷஻  range, i.e., 𝑃 =  𝛿஺ = 2 dB, 𝑐 ≜ 0.5(f୅(𝒙) + f୆(𝒙)) and 𝑟 = ±1. A power 
reduction (𝑟 = −1) was considered in the case 𝑁𝐿𝐼𝑁஺ and 𝑁𝐿𝐼𝑁஻, otherwise an increase (𝑟 = +1). The horizontal-
filled boxes designate cases where classifiers “slightly disagree”, i.e., when adjacent ranges are detected by the 
classifiers. In this case, a correction of Δ𝑃 = 𝑟 ⋅ 𝑐 ⋅ 𝑝 is taken, where 𝑝 is equal to half the 𝑀𝐼𝐷஻  range, i.e., 𝑝 = 𝛿஻  =
 0.5 dB. This correction is an input power increment (𝑟 = +1) if the classifiers predict 𝑀𝐼𝐷஺ (or 𝑀𝐼𝐷஻) and 𝐿𝐼𝑁஻ (or 
𝐿𝐼𝑁஺), while a reduction (𝑟 = −1) otherwise. In the vertical-filled boxes when classifiers “severely disagree”, a 
correction Δ𝑃 = 𝑟 ⋅ 𝑝 is chosen when the assigned labels are 𝑁𝐿𝐼𝑁஻ and 𝐿𝐼𝑁஺, if f୆(𝒙) > f୅(𝒙), we set 𝑟 = −1, while 
𝑟 = +1 when f୆(𝒙) < f୅(𝒙). In the case 𝐿𝐼𝑁஻ and 𝑁𝐿𝐼𝑁஺ are assigned, a similar rule applies. 
To have a fair comparison with ML optimization, we introduced a naïve average SNR-based strategy, relying solely 
on a set of 10଺ SNR samples. Both approaches start with a 𝑃௜௡ = 𝑃଴ that is initially unknown. The naïve strategy 
adapts power by (𝑟 ⋅ 𝛿𝑃) dB with 𝑟 = ±1 and 𝛿𝑃 = 0.5𝑑𝐵 in every step, based on the observed average SNR 𝐸[𝑆]. 
It starts by randomly choosing 𝑟଴ and adjusting the power to 𝑃௜௡ = 𝑃଴ + 𝑟଴ ⋅ 𝛿𝑃. If 𝐸[𝑆] increases, then 𝑟∗ = 𝑟଴, 
otherwise, power is readjusted to 𝑃଴ and 𝑟∗ = −𝑟଴.Then the power is iteratively adjusted to 𝑃௜௡ + 𝑟∗ ⋅ 𝛿𝑃 until a 
decrease in the average SNR is detected. Finally, it takes one step back and it stops at 𝑁௧௛ iteration. 
3. Results 
In Fig. 2 a) we evaluated the cross-validation performance of A and B classifiers using different SNR standardized 
moments combinations (markers), comparing the results against using the entire normalized PDF (lines), as in [2]. 
The y-axis represents the macro F1 score, while the x-axis displays the input features combinations. Two key findings 
stand out from this analysis. Firstly, individual features like skewness (𝛾) and average SNR (𝜇) have a significant 
impact on F1. Skewness is the primary metric for distinguishing between LIN and NLIN ranges as it helps differentiate 
symmetric PDFs in LIN from asymmetric ones in NLIN. Conversely, 𝜇 is essential for identifying the MID-range 
with the highest SNR. Secondly, both classifiers produce similar scores, suggesting that the choice of the MID-range 
does not affect the ML performance. Optimal results arise from using all four input features [𝜇, 𝜎ଶ, 𝛾, 𝜅], resulting in 
an 0.98 test macro F1 score for both classifiers, while only slightly lower scores are achieved by using [𝜇, 𝜎ଶ, 𝛾] or 
[𝜇, 𝛾]. Notably, using moments outperforms using the entire PDF, indicating their effectiveness in range identification. 

 
Fig. 1: a) Simulation set up and the ML-driven closed-loop for input power (𝑃௜௡) optimization. Two classifiers 𝑑 =
{𝐴, 𝐵} are used to define a power correction Δ𝑃 from the predicted power ranges (Yௗ) and its probability (fௗ(𝒙)). b) 

Classifiers power ranges and the corresponding power correction, where 𝑐, 𝑃 and 𝑝 are constant, and 𝑟 = ±1. 
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Finally, we conducted a comparison between the ML-driven and naïve strategies under a fixed scenario with a symbol 
rate of 69 GBd, a 75 GHz channel spacing, and random positions of the ROADMs, with their PDL elements set to 
0.56 dB. Fig. 2 b) offers a visual representation of the ML and naïve power adjustment, starting from two 𝑃଴ values: 
one in the ASE-dominated regime (𝑃଴ = −0.8 dBm, Example1) and one in Kerr-dominated regime (𝑃଴ = 4.6 dBm, 
Example2), for an 18-span link. The y-axis denotes the adjusted 𝑃௜௡ , while the x-axis represents the number of 
iterations executed by the optimization strategies. The dotted line represents the desired 𝑀𝐼𝐷஺ range, and the dashed 
line corresponds to the NLT, in this case equal to 3 dBm. To compare in terms of average SNR improvement, we 
define 𝛥𝑆𝑁𝑅 =  E[𝑆𝑁𝑅ே] − E[𝑆𝑁𝑅଴], where E[𝑆𝑁𝑅଴] is the average initial SNR corresponding to 𝑃଴, and 
E[𝑆𝑁𝑅ே] is the one corresponding to 𝑃ே . In the Example 2, the ML-driven strategy quickly reaches the optimal range 
in one iteration, while the naïve approach takes five iterations. In the Example 1, both strategies require more iterations 
(4 for ML-driven and 10 for naïve), while the naïve approach yields slightly higher SNR improvements. To highlight 
the trade-off between the number of iterations and SNR improvements in both strategies, we randomly selected various 
𝑃଴ ranging from -3 dBm to +3 dBm (excluding the training value). Fig. 2 c) presents the optimization results for the 
two strategies with these selected initial input powers. In the top chart, the y-axis represents the SNR improvements, 
while the x-axis displays the difference between the 𝑃௜௡ and the NLT. The bottom histogram uses the same x-axis to 
represent the number of iterations reported on y-axis. The figure illustrates that we achieved significant SNR 
improvements in the NLIN range due to the faster SNR decrease compared to the LIN range. The SNR improvements 
in both strategies are quite similar, with the naïve strategy slightly outperforming the ML strategy in the ASE-
dominated range. The ML-based has a significant reduction of the number of iterations, underlining the ML’s 
advantages both near and far from the NLT point. Near NLT, minimal iterations are needed thanks to ML’s ability to 
find the optimal range, while far from NLT, fewer iterations are required due to a bigger power correction. 
4. Conclusion 
In this study, we introduced an ML technique for input power optimization based on monitored SNR samples in a link 
with PDL. We utilized two random forest classifiers to categorize SNR standardized moments into three ranges: close 
to the optimum power, ASE dominant, and Kerr dominant. These classifiers were combined to create a smart 
optimization of the input power aiming to maximize the average SNR. We compared this approach to a naïve method 
that relied solely on average SNR with fixed power corrections. Both the ML-driven and naïve techniques resulted in 
SNR improvements from 0 to 2 dB when the input power was within 3 dB from the optimum. Notably, the ML method 
required significantly fewer iterations while delivering same or slightly lower SNR improvements with respect to the 
naïve optimization. 
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Fig. 2: a) Cross-validation ML performance for Classifiers A (fine) and B (coarse) using the SNR standardized 

moments combinations (markers) and the normalized PDF (lines). b) ML and naïve optimization convergence speed 
for two initial power examples: ASE-dominated (Example 1) and Kerr-dominated (Example 2) c) ML and naïve 

optimization comparison in terms SNR improvement (upper) and required iterations (lower). 
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