wic.4 OFC 2024 © Optica Publishing Group 2024

Open Software Development Kit (OpenSDK)
for Optical Network Disaggregation

Filippo Cugini,’"* Davide Scano,”> Andrea Sgambelluri,?
Francesco Paolucci,! Alessio Giorgetti,* and Piero Castoldi?
LCNIT, Pisa, Italy

2Scuola Superiore Sant’Anna, Pisa, Italy
3CNR, Pisa, Italy

“filippo.cugini@cnit.it

Abstract: OpenSDK is proposed to provide vendor-neutral, micro-service-based control
of underlying optical hardware. Disaggregation is then achieved without requiring standard
Southbound interfaces from the SDN Controller. Validation is performed enforcing smart
operations on [PoWDM white box. © 2024 The Author(s)

1. Introduction

Aiming at achieving cost savings and avoid vendor lock-in, disaggregated optical networks are characterized by
network elements such as transponders/transceivers and line systems controlled by vendor-neutral open interfaces.
So far, the NETCONF/YANG southbound interface (SBI) has been considered a key technology for disaggrega-
tion. YANG provides standardized data models to represent network elements and their attributes [1,2].

In the last decade, huge effort has been devoted to the definition of standard YANG data models. However,
their adoption is still very limited, due to several open issues. First, multiple independent initiatives such as Open-
ROADM, OpenConfig and IETF have been working in isolation on the definition of their own data models. As
a consequence, each of these data models is supported by only a few system vendors. Second, they do not al-
ways provide clear descriptions on how to interpret/implement the models, such as for disaggregated optical line
systems (OLS), leading to interoperability issues even under the same initiative. Third, network control is always
performed by proprietary SDN Controllers, which can hardly introduce advanced effective features without losing
compatibility. Specifically, advanced functionalities would require software modules also deployed at the network
element [3-5], relying on functional models that are beyond the current scope of an SDN agent using standard
YANG models.

In this work, we propose open software development kit (OpenSDK) as a different approach to provide optical
network disaggregation. OpenSDK enables third-party tools and resources to run on the disaggregated hardware
elements. In OpenSDK, network elements need to (1) support micro-services on top of a basic operating system
(nowadays rather common, as in SONiC Operating System (OS) [6, 7]), and (2) provide standard comprehen-
sive set of tools (i.e., SDK) to control and manage the underlying optical hardware components of a network
element. This proposal differs from previously presented solutions, such as Transponder Abstraction Interface
(TAI) [8], since TAI were envisioned to be used together with standard YANG data models (i.e., without en-
abling proprietary tools to run on the network elements) and as such they represented an additional and redundant
layer of abstraction. On the contrary, with OpenSDK, vendor neutral control of disaggregated hardware is guar-
anteed by standardized SDKSs. Thus, the southbound interface including the communication protocol from the
(proprietary) SDN controller to the network element hosting the (proprietary) SDN Agent can be of any type.
Furthermore, OpenSDK facilitates the deployment of SDN-controlled smart solutions at the network element,
e.g., based on local Al processing [9]. To facilitate the adoption of OpenSDK solution, the work performed by
disaggregation initiatives should be exploited as much as possible. This includes the state and config parameters
by OpenROADM/OpenConfig as well as the Linecard Abstraction Interface (LAI) [6] and other SONiC-based
deployments, augmented to provide more accurate device control and smart capabilities.

2. Proposed OpenSDK solution

Fig. 1(left) shows a traditional non-disaggregated solution provided by a single vendor which leads to vendor lock-
in. Fig. 1(center) shows the current disaggregated approach having the Vendor of the SDN Controller controlling
white boxes provided by other Vendors. In this case, standard NETCONF/YANG SBI is adopted to communicate
with the network element. Such communication is handled at the network element by an SDN software agent con-
figuring the underlying hardware (e.g., coherent pluggables modules in [PoWDM white boxes) using proprietary

Disclaimer: Preliminary paper, subject to publisher revision

WwicC.4 OFC 2024 © Optica Publishing Group 2024

p
SDN Controller SDN Controller SDN Controller
(Vendor A) (Vendor A) (Vendor A)

&

Proprietary Open SBI Smart
SBI NETCONF/YANG Proprietary
Bl

(1 R (i)
SDN Agent SDN Agent & Smart faiE
SDN Agent
(Vendor A) (Vendor B)
L Y, J __(VendorA))
== e B oo
HW HW HW
(Vendor A) (Vendor B) (Vendor B)
White box OpenSDK white box

Fig. 1. Left: non-disaggregated solution provided by a single vendor. Center: current disaggregated
approach based on standard NETCONF/YANG SBI. Right: proposed OpenSDK solution.

SDK. Fig. 1(right) shows the proposed disaggregated solution based on OpenSDK. In this case, the Vendor of the
SDN Controller provides the white box with a proprietary, micro-service-based (e.g., in the form of a docker con-
tainer) software module including the SDN Agent. Communication between Controller and network elements is
provided with proprietary data models and protocols. The proprietary software module can also encompass smart
management features of the underlying hardware, including smart Al-empowered applications for correlation of
locally retrieved data, monitoring and failure management.

OpenSDK provides Application Programming Interface (API) for the SDK as well as libraries and software
submodules that implement the SDK API. The SDK API provides methods and functions for developers to interact
with the optical network element. This includes functions for configuring transmission parameters, monitoring
signal quality, and managing network connections. More specifically, we implemented OpenSDK according to a
hierarchical structure, having the higher layer describing the whole network element (i.e., platform) and the lower
level detailing the specific hardware components.

In the case of an [IPoWDM OpenSDK white box, the platform provides the number and type of ports (e.g.,
form factor, number of electrical lanes). Then, each transceiver inserted in a port is managed according to the
specific type of pluggable module. For example, the 400ZR+ module is specified according to CMIS/C-CMIS
specifications. Its SDK API includes get/set of transmission parameters including frequency, output power and
operational mode as well as other state parameters. In addition, with OpenSDK, the libraries for managing the
400ZR+ modules need also to be provided by the OpenSDK white box Vendor. This includes for example the
mechanisms for initializing and managing the EEPROM pages (e.g., Versatile Diagnostics Monitoring - VDM,
configuration, and status), the Module State Machine (MSM) for initialization, and the Data Path State Machine
(DPSM) for standard configuration. Similarly, OpenSDK can be applied to ROADMs and amplifiers. The ROADM
platform provides the list of components (i.e., SRG add/drop, degree, amplifiers) and the internal connectivity to
enable cross connections. Then, each component is managed according to its specific type (e.g., get/set cross-
connections among internal/external ports of a degree component). Similarly, amplifiers are described via their
traditional specific config and state parameters (e.g., power, tilt, etc), but managed by a standard SDK node and not
through standard SBI from the Controller. In our implementation, OpenSDK API relies on the gNMI technology.

3. OpenSDK experimental demonstration

Fig. 2a shows the considered network testbed. It consists of three optical fiber spans of 80km each, interconnecting
a pair of [IPoWDM white boxes with 400ZR+ transceivers running SONiC OS. A software module, including the
SDN Agent and a smart Application, is deployed as docker container in each of the white boxes. The App per-
forms intelligent data aggregation and correlation. As an example, it is able to retrieve and analyze RX parameters
from optical signals that are partially sharing one of the links, as A-B and C-D in the figure. Fig. 2b shows the
Wireshark capture of the messages exchanged by the [IPoWDM SDN Agent with both the SDN Controller and
the underlying OpenSDK implementation. Message n. 63 shows the request from the Controller to the Agent to
perform the configuration of the pluggable module and then apply a smart correlation between pre-FEC BER of
signals A-B and C-D. The request is made through a proprietary REST interface. The SDN agent communicates
via gRPC/gNMI procedures with the OpenSDK module, implemented relying on the OpenConfig YANG models
version 1.9.0. In particular, it configures the pluggable parameters, by exploiting the Set RPC (message 71, ex-
ploded in the bottom part of the figure). Then, the same SDN agent waits that the card becomes active, by using
the Get RPC (messages 92, 309, 467, 483, 563). At this point, the App performs the subscription to the pair of
underlying transceivers to retrieve pre-FEC BER values (message 639). The subscription details are exploded in
the bottom part of Fig. 2b. Finally, the telemetry stream is activated for both connections. As shown in Fig. 2c, in
the Grafana dashboard attached to the smart SDN agent module, a soft failure affects Ethernet16 pluggable (i.e.,

Disclaimer: Preliminary paper, subject to publisher revision

WwicC.4 OFC 2024 © Optica Publishing Group 2024

T
- - i 303 PUT_/SnartSAgent/ConfigurePort /3/Ethernet 16 KTTP/1.1
Whitebox1 (€= 0 smartson| White box 2 r] 0 g et ~ (PROTORUF) g thequest set b)
; agent @, GRPC 215 200 0K
NMI/gRPQ agentd) le - SDN L) gNMI/gRPC ¥ s 396 POST /gnniTelenetry. gnniTelenetry/Get, (lemnur) gnniTelemetry. GetRequest GET
8 8 309 6.761. OSDKServer arec 288 200 OK, (PROTOBUF) ganiTe Leretry. GetRec
T osok | Controller T osok | 325 6.763. SonAgent. chec 8 POST [Teleetry anTelencty G, (v»mmw) guiTelenetry.GetRequest GET
ciwe oau)
e PROTORUE) guniTelenctry GetRemuest GET

o

39 POST /guniTelenetry.

GRPC 285 200 OK, (PROTORUF) g onse
GRPC 515 POST /gnniTelenetry. gnmiTelenetry/Subscr

378 200 OK, (PROTOBUF) gnmiTelenetry.

. WTTP/JSON 199 KTTP/1.0 200 OK , JavaScript Ob.

GRPC 237 DATAL1] (GRPC) (PROTOBUF) g
T G o GRPC 237 ONTALL) (G) (POTORLRY cnniTelenetry.Telenetybate
807 24.79_ OSDKServer SDNAgent. GRPC 236 DATA[1] (GRPC) (PROTOBUF) gmmiTelemetry. TelenetryData
85127.80_ OSDKServer SDNAgent. GRPC. 236 DATA[1] (GRPC) (PROTOBUF) gmniTelenetry.TelenetryData
1310 51.82. 0SKServer SDlAgent GRPC 737 DATALL] (GRPC) (PROTOBUF) gnniTelemetry. Telenetrydata
1381 54,82 0SKServer SDNAgent GRPC 236 DATALL] (GRPC) (PROTORUF) gnniTelenetry. Telenetrydata
1242 57.82.. 0SDKServer SDNAgent GRPC F
1500 60.83.. 0SDKServer SDiAgent, GRPC
1560 63.83.. 0SDKServer SDlAgent, GRPC
1779 66.83.. 0SDKServer SDAgent, GRPC
1911 69.84. 0SKServer SDNAgent GRPC pata
1019 60.84_ s memmoller WTTP/ISON 184 P0ST /DNController/Netorkevents MITPTL 5 T Savaseript Object Notation (application/Jsom)
pre-fec-BER 2008 72.84.. 051 SDNAgent. GRPC 237 DATA[1] (GRPC) (PROTOBUF) gnmiTelemetry.TelemetryData
00100 2069 75.54.. 0SDKServer _ SDNAgent GRPC 237 DATA[1] (GRPC) (PROTOBUF) gmiTelenetry.TelenetryData
< Protocol Buffers: /gnniTelenetry.ganiTelenctry/Set, request SET [+ Protocol Buffers: /gmiTelenetry. guniTelenetry/Subscribe, request
~ Hessage: gnniTelenetry. SetRequest ~ essages gmiTelenetry. SubscribeRequest
N [Message None: gomiTelemetry. SetRequest] Hessage Nase: gnaiTelesetry.SubscribeRequest] SUBSCRIBE
~ ki (1 bytes) 2 FIi): e - 2 (sving)

~ hessage: gmiTelenetry.Keyvalue
(flessage llone: guniTelenctry.Keyvalue]
> Field(1): key = /conponent/Ethernet1s ethemnet/fec/
> Field(3): str_value = S (string)
Volue Length 41
Value:
v ki (87 bytes)
+ Pessage: grmiTelenetry Keyvalue
e tome: rmTelectey Keptauel
> Field(1): i
i > Faeac: et ooz (oring
! ~ kvi (66 bytes)

0.00100 resrrs:, (8 hes)

~ Message: gmielenetry.Resource
[Hessage Nane: giiTelenetry Resource]
> Field(1): path =)

prefecsER

Lenetry.Resource

NAA A NS MV WA

| s aiteleetey Ky s tres g ehmery desorce]
/ Toessge e, soietontra Kevaloe] J Fieath: o
B . B » . Y y o > Fn]d(l) key =
. © ks (58 bytes) Protocol Buffer.s: /gnmiTelemetry.gnmiTelemetry/Get, request G ET
oy e wersoses puaiTelenetey.KeyVelue v Message: gnniTelemetry.GetRequest
= Ftherett [Fessage Nae: gneiTelenctry.KeyValue] [Message Name: gnmiTelemetry.GetRequest]
e (D c) 5 FeldCh: ey = JeompmentEShernetts/oticol-chamel confa/tseoner || 5 Fiena(): poths . fconponent/Ethermet16/thernet/state/adnin-state

> Field3): str valve = 0 (string)

Fig. 2. (a): testbed; (b) Wireshark captures at white box 2; (c) Pre-FEC BER telemetry monitors.

box D receiver in Fig. 2a). The App detects a relative deviation of pre-FEC BER, before it reaches critical levels.
Message 1919 shows the alarm notification sent to the Controller, including the indication that can significantly
facilitate the failure localization. No other data or messages have to be sent to the Controller.

The same experiment has been repeated using different HW (i.e., 100G transponders) from a different Vendor
and with different OS (still supporting micro-services). Only adaptation of the key string in the OpenSDK API has
been performed, while the very same smart App has been successfully operated over the new harwdare with no
modifications. Using traditional SDN-based NETCONF/YANG disaggregated approaches, no smart APPs could
have been installed and controlled at the node level. As a consequence, smart data aggregation and correlation
could practically occur only at the Controller level, which could easily be overloaded by excessive data. Further-
more, alarms are triggered by the crossing of individual threshold, and not upon deviations among co-monitored
channels. Additional examples of smart operations requiring a combination of local and centralized intelligence
include effective power equalization techniques running in ROADM s or optimized amplifier gain/tilt control run-
ning at the amplifier level. Indeed, smart control and management operations performed by propriety optical line
system (OLS) are typically enabled by advanced control features rather than by different commands to underlying
coherent pluggables (nowadays all compliant to C-CMIS) or WSSes and amplifiers.

4. Conclusions

This paper introduced OpenSDK as innovative approach to enable disaggregation in optical networks, pro-
viding standard, micro-service-based control of underlying optical hardware without requiring standard NET-
CONF/YANG communication with the SDN Controller. The proposed OpenSDK solution was implemented and
validated on transponders and [IPoOWDM white boxes, showing the effective capability to enforce intelligent data
aggregation and correlation at the white box level.

Acknowledgment. This work is supported by the EU ALLEGRO Project (grant agreement No. 101070009) and by the MIUR
PRIN2022 ZeTON Project (GA 2022YAS59Z]).

References

1. E. Riccardi et al., “An operator view on the introduction of white boxes into optical networks,” JLT (2018).

2. A. Sgambelluri, A. Giorgetti, D. Scano, F. Cugini, and F. Paolucci, “OpenConfig and OpenROADM automation of
operational modes in disaggregated optical networks,” IEEE Access 8, 190094-190107 (2020).

3. G. Borraccini et al., “Experimental demonstration of partially disaggregated optical network control using the physical
layer digital twin,” IEEE Trans. on Netw. Serv. Manag. 20, 2343-2355 (2023).

4. Z. Wang, D. Kilper, and T. Chen, “An Open EDFA Gain Spectrum Dataset and Its Applications in Data-driven EDFA
Gain Modeling,” in Optica Open, (2023).

5. L. Gifre et al., “Experimental demonstration of transport network slicing with SLA using the teraflowsdn controller,”
in ECOC, (2022).

6. W. Zheng et al., “Sonic-based network operating system for open whitebox optical transport,” in ECOC, (2022).

7. A. Giorgetti et al., “Enabling hierarchical control of coherent pluggable transceivers in sonic packet—optical nodes,” J.
Opt. Commun. Netw. 15, 163-173 (2023).

8. V. Lopez et al., “Enabling fully programmable transponder white boxes [invited],” J. Opt. Commun. Netw. (2020).

9. L. Velasco, P. Gonzdlez, and M. Ruiz, “An intelligent optical telemetry architecture,” in OFC, (2023).

Disclaimer: Preliminary paper, subject to publisher revision

