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Abstract: Knowledge sharing techniques among OCATA optical layer digital twin instances are 

proposed for multi-domain scenarios. Intra-domain model transformations are performed to 

guarantee privacy of intra-domain topology. Remarkable accuracy to estimate multi-domain 

lightpaths QoT is shown. © 2024 The Authors1 

1. Introduction 

Optical layer digital twins have been proposed to facilitate network automation, as they can support applications 

from Quality of Transmission (QoT) estimation during optical connection (lightpath) provisioning to failure 

management after the lightpath has been setup [1]. Such digital twin applications generally focus on the operation 

of single domain networks, where the digital twin has fully network visibility. However, future 6G networks are 

envisioned to support a large number of services with stringent performance spanning multiple domains [2] and 

therefore, meeting such end-to-end (e2e) requirements will require from tight coordination among domains. To 

create e2e models, the different domains supporting an e2e lightpath can share models trained for the intra-domain 

network, as in [3]. However, distributing such intra-domain models is not secure, as they can include details of 

the intra-domain network, e.g., the number of hops, the distance of the optical links, or the configuration of optical 

devices. Note that such information could be of interest to craft specific attacks in case of eavesdropping [4]. 

Therefore, privacy of the internals of each domain must be enforced when intra-domain models leave the security 

perimeter of the domain when are shared.  

In this paper, we assume the OCATA optical time domain digital twin [5]. OCATA relies on deep neural networks 

(DNN) to model the expected effects of optical devices (optical filters and amplifiers) and fibers on in-phase and 

quadrature (IQ) optical constellations. By concatenating DNNs for the elements in the intra-domain route of a 

lightpath, expected QoT, such as the pre-forward error correction (pre-FEC) bit error rate (BER), as well as other 

metrics, can be computed [1]. As intra-domain models are concatenations of DNNs, transformations are proposed 

to secure sharing intra-domain models used for the modelling of e2e multi-domain lightpaths. 

2. E2e OCATA Modeling in Multi-Domain Scenarios 

The proposed solution is to create exportable intra-domain DNN models that preserve privacy at the required 

level. Such models are created on-demand, e.g., every time a new inter-domain lightpath is provisioned. 

Exportable models are built from already trained ones and shared among domains supporting an e2e lightpath in 

order to build the e2e model. In this work, domain boundaries are defined by the network elements under the 

control of a single Software-Defined Networking (SDN) domain controller, e.g., an operator domain or vendor 

island. We assume that every domain includes an instance of OCATA that is fed with DNN models of the different 

transponders (TP), reconfigurable optical add-drop multiplexers (ROADM), and fiber links (referred to as 

components) in the route of a lightpath in the domain (intra-domain route or segment) [5]. 

Fig. 1 illustrates an e2e multi-domain network scenario with three domains (labeled D1, D2, and D3). Without 

loss of generality, we assume that the route between sites A and Z (in orange color in Fig. 1) represents either: i) 

a new multi-domain lighpath which e2e QoT needs to be evaluated during provisioning time; or ii) an already 

established multi-domain lightpath which e2e model needs to be built for computing expected QoT metrics. The 

main workflow for the e2e model generation is also included in Fig. 1. OCATA first obtains the intra-domain 

route segment p of the lightpath from the local SDN controller (1 in Fig. 1) and builds a disaggregated model η 

that characterizes the segment by concatenating trained component models (2). Such models propagate the set of 

features F that characterize IQ constellation points as bi-variate Gaussian distributions with its mean position (µI 

and µQ), its variance (σI and σQ), and covariance (σIQ), i.e., five features per constellation point (see [5] for details). 

To compose the e2e model of the lightpath, let us assume that source and intermediate domains of the lightpath 

share intra-domain models with the destination domain through the network orchestrator. Therefore, intra-domain 

model synthesis is carried out in the domains sharing their models to generate exportable segment models φ from 

the disaggregated ones (3). Models φ hiding the internals of the domain for privacy preserving, are sent to the 

domain SDN controller (4) and shared with the destination SDN controller through the orchestrator (5). Finally, 

OCATA in the destination domain generates the e2e model from the received φ models (6-7). Note that the e2e 

model is a DNN-based model that concatenates the intra-domain models of the domains in the path (φD1 and φD2),  
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Fig. 1: Multi-domain scenario and proposed workflow 

together with the disaggregated model for the local domain (ηD3). By propagating features F from source to 

destination, expected IQ constellations can be obtained (8) and used for the selected application. 

3. Exportable Model Synthesis 

This section details the procedure carried out by source and intermediate domains of an e2e lightpath to generate 

exportable intra-domain models φ from disaggregated models η. To this aim, two different sets of component 

models are available in OCATA. On the one hand, the symmetric non-linear biased (SNLB) set contains highly 

accurate DNNs with: i) equal number of neurons per layer; and ii) non-linear activation functions (e.g., hyperbolic 

tangent, tanh) and non-zero bias for every hidden and output neuron. This set is used to build η, which is expected 

to provide the highest fidelity to model the intra-domain lightpath segment. On the other hand, the asymmetric 

linear un-biased (ALUB) set contains component models where: i) each layer has a different number of neurons; 

and ii) the activation function of the first hidden layer and output layer is linear and the bias of the first hidden 

layer and output layer is zero. This set is used to generate an alternative disaggregated model η’. Although η is 

more accurate than η’, the latter exhibits good properties for security that allow easily hiding the concatenation of 

consecutive components by merging layers, thus obtaining a layered intra-domain model whose components  
 

cannot be isolated. 

The overall procedure is detailed in Algorithm 1, which 

receives the disaggregated intra-domain model η, models 

set ALUB, and a threshold thr used for truncating non-

significant model coefficients. Without loss of generality, 

we assume that every single component model in η has k 

alternative models in ALUB, each of them with different 

number and configuration of hidden layers. After  
 

Algorithm 1: Exportable model synthesis procedure 

IN: η, ALUB, thr OUT: φ 

1: 
2: 
3: 
4: 
5: 
6: 

η’ ← ∅ 
for i in 1..|p| do 

η’← η’ ∪ getMostDiverse(ALUB, η[i].type, η’) 
φ ← mergeComponents(η’) (eq. (1) and Fig. 2) 
φ ← shuffleHiddenNeurons(φ) 
return truncateCoeffs(φ, thr) 

 

initializing model η’ (line 1 in Algorithm 1), a model for each component in η is chosen from the ALUB set and 

added to η’ (lines 2-3). At every iteration, the selected model is the one that maximizes the diversity (computed 

by means of the Euclidean distance in the multi-dimensional space of model parameters and coefficients) with 

respect to the component models already added to η’. Then, a merging procedure between consecutive component 

models is applied (line 4). This procedure is sketched in Fig. 2 for models u and v (each with n layers), where u(i) 

denotes the i-th layer of model u. Thus, weights α (for connections between the last hidden layer and the output 

of model u) and β (for connections between the input layer and the first hidden layer of model v) can be linearly 

merged to obtain new weights γ using eq (1). 

𝛾𝑖𝑗 = ∑ 𝛼𝑖𝑘 · 𝛽𝑘𝑗

𝑘∈𝐹

 ∀𝑖 ∈ 𝑢(𝑛 − 1), 𝑗 ∈ 𝑣(2) (1) 

Although the exportable model φ is ready at this point, 

layer obfuscation makes more difficult getting lightpath 

details by model inspection. Thus, neurons are randomly 

shuffled within their layer and weights and biases are 

truncated to 0 if they are lower than thr (lines 5-6).  
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Fig. 2: DNN layer merging 

4. Illustrative Results 

In order to evaluate the performance of the proposed methodology, we implemented a Python-based simulator 

emulating a transparent multi-domain network. The OCATA instance of each domain was loaded with component  
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Fig. 3: Feature propagation performance of constellation point [-3+3i] 
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Fig. 4: e2e QoT estimation Fig. 5: Privacy evaluation of lightpath example (4 hops of 400-km links) 

models (ROADM and fiber links ranging from 100 km to 400km) trained with data for 16- quadrature amplitude 

modulation (QAM) optical constellations available in [6]. As introduced in Section 2, each constellation point is 

characterized by 5 features that are propagated through the DNN models. To reduce DNN models’ complexity, 

features for only four selected constellation points ([-3+3i], [1+1i], [-1-1i], and [1-3i]) are propagated. Then, the 

SNLB set contains one single DNN model per component type, with 20 input and output neurons, and 3 hidden 

layers with 20 tanh neurons. Regarding the ALUB set, k models per component were trained with a variable 

number of hidden layers (from 3 and 6), number of neurons per layer (from 10 to 30), and activation function, 

while ensuring the characteristics of first hidden and output layer of component models described in Section 3. 

We firstly focus on evaluating the procedure in Algorithm 1 to obtain φ models for a wide range of segments with 

1 to 4 hops, which leads to total intra-domain distances between 100 km and 1,600km for the lightpath segments. 

Three approaches are compared: i) using the disaggregated model η (for benchmarking purposes), ii) φ with k=1 

(i.e., without model diversity), and iii) φ with k=5 (with model diversity). In both φ models, thr was set to 0.01. 

Fig. 3 shows the expected evolution of µI and σI (normalized to training values) of constellation point [-3+3i] for 

segments with links of 100km (Fig. 3a-b) and 400km (Fig. 3c-d). We observe in the results that all models provide 

similar performance in estimating propagated features, which validates the accuracy of φ models. 

Next, we reproduce the scenario and workflow in Fig. 1 considering different distances and link lengths for the 

domains. The approach in [1] for estimating the pre-FEC BER from propagated features is used as e2e QoT 

evaluation metric in the OCATA instance of domain D3. Fig. 4 shows the estimated pre-FEC BER as a function 

of e2e lightpath length for the considered approaches. We observe that accurate e2e QoT estimation is provided 

by exportable model φ (~6% maximum error in the log scale with respect to benchmarking using η model). 

Finally, we evaluate privacy for a 4-hop lightpath with 400-km links. Fig. 5 shows two score-based methods that 

aim at finding those intermediate model layers that are boundary (beginning or end) of components, as a way to 

infer some characteristics of the topology of the intra-domain network topology. In the first method (s1), 

intermediate layer outputs are retrieved and compared with model output in terms of mean square error (MSE) 

(Fig. 5a-c), while the second method (s2) tries to find patterns of model coefficients that repeat along the model 

(Fig. 5d-f). In both cases, the score is inversely proportional to MSE and large values indicate a layer that is 

suitable to be a component boundary (red lines show significant levels). As expected, η model provides detailed 

internal information; one peak per component (ROADMs except last and links) is clearly observed. On the 

contrary, components cannot be isolated by s1 when analyzing φ models. Moreover, adding diversity (k=5) 

prevents detecting coefficient patterns by s2, which validates the proposed exportable model synthesis procedure. 

5. Conclusions 

The composition of e2e models for multi-domain lightpaths has been proposed and validated to increase security 

during model sharing. OCATA builds exportable models for intra-domain lightpaths segments that are shared. 

Results showed high accuracy of the e2e model together with valuable intra-domain privacy preserving properties. 

References 

[1] L. Velasco et al., “Applications of Digital Twin for Autonomous Zero-Touch Optical Networking [Invited],” in Proc. ONDM, 2023. 

[2] E. Bertin et al., Shaping Future 6G Networks: Needs, Impacts, and Technologies, Wiley & Sons, 2021. 
[3] F. Tabatabaeimehr et al., “Cooperative Learning for Disaggregated Delay Modeling in MultiDomain Networks,” IEEE TNSM, 2021. 

[4] P. Porambage et al., “The Roadmap to 6G Security and Privacy,” IEEE Open Journal of the Communications Society, 2021. 

[5] D. Sequeira et al., “OCATA: A Deep Learning-based Digital Twin for the Optical Time Domain,” IEEE/OPTICA JOCN, 2023. 
[6] M. Ruiz et al., “Optical Constellation Analysis (OCATA),” https://doi.org/10.34810/data146, CORA, V2, 2022. 

W1C.3 OFC 2024 © Optica Publishing Group 2024

Disclaimer: Preliminary paper, subject to publisher revision


