
Low-Latency Physical-Layer Function Chaining
Using Inter-Container Shared Memory for Fully

Virtualized Access Networks
Takahiro Suzuki, Sang-Yuep Kim, Jun-ichi Kani and Tomoaki Yoshida

NTT Access Network Service Systems Laboratories, NTT Corporation, 1-1 Hikari-no-oka, Yokosuka-Shi,
Kanagawa, 239-0847 Japan

tkhr.suzuki@ntt.com

Abstract: This paper proposes novel physical-layer function chaining utilizing inter-
container shared memory for fully virtualized access systems. Our containerization of soft-
warized 10G-EPON physical coding sublayer functions reduces latency from 1.56 ms to
0.408 ms. © 2024 The Author(s)

1. Introduction
With the emergence of more sophisticated applications, network equipment must efficiently meet different user
requirements by replacing application specific integrated circuit (ASIC)-based dedicated systems with general-
purpose components [1]. Broadband Forum (BBF) and Open Networking Foundation (ONF) have developed net-
work function virtualization (NFV) and software-defined network (SDN) techniques for passive optical network
(PON) systems [2, 3]. SDN-enabled broadband Access (SEBA) is a critical advance as it allows PON systems
to be based on general-purpose servers and whitebox optical line terminals (OLTs) by abstracting differences
in PON standards and development vendors. SEBA is being commercially deployed by some network carriers
in order to reduce development cycle times and capital expenditure (CAPEX). To maximize these advantages,
expansion of software functions continues to be studied. Related studies have examined and demonstrated the
software implementation of dynamic bandwidth allocation (DBA) [4], and the aggregation switch has been soft-
warized. We further expanded the software region by using graphics processing units (GPUs) as accelerators to
achieve real-time softwarization of 10G-EPON physical coding sublayer (PCS) [5] and 10-Gb/s coherent receiver
digital signal processing (DSP) [6]. Furthermore, the software processing latency of 10G-EPON PHY has been
improved to approximately 0.5 ms [7]. However, these physical-layer implementations are limited to processing in
bare metal servers, and function chaining, which involves the transfer of physical-layer signals between multiple
applications, has not been verified as shown in Fig. 1(a). We target the microservice architecture shown in Fig.
1(b) that virtually divides the execution environment by using containers for each function; it enables application
development and function chaining for each function. In conventional containerization, data is transferred across
the transport layer using relatively low-layer methods such as transmission control protocol (TCP) via virtual
network interface card (vNIC), which greatly increases latency.

In this paper, we propose a novel physical-layer function chaining method that utilizes inter-process shared
memory. To manage the timing of function chaining, it passes signal data between applications of physical-layer
functions by adding update flags to the shared memory entries. Implementing the method in software significantly
reduces the latency of inter-container communications and matches the performance of bare metal implementation.

2. Physical-layer function chaining method utilizing inter-container shared memory
Figure 2(a) shows a conventional inter-container communication method [8]. The memory region is split for each
container. For data transfer of GPU memory from application (app) 1 to app 2, after accessing data in GPU memory
region of container 1 and transferring it to CPU memory, app 1 outputs the data in the CPU memory from vNIC.
It is input to the bridge via virtual Ethernet port (veth) in the host operating system (OS). The data is sent to app
2 in container 2 via veth and vNIC. Finally, the data is stored in the CPU memory region of container 2 and then
transferred to GPU memory. TCP is used for this communication as a relatively low layer method. This method
is sufficient for upper-layer applications that only need to pass relatively small amounts of data, but this causes an
increase in latency for physical-layer functions that must transfer large amounts of data at high repetition rates.

(a)

Host OS

Hardware

PCS App

Bin/Libs

Container

Host OS

Hardware

Bin/Libs

PCS App

Container engine

Container

Bin/Libs

DSP App

Container

Bin/Libs

DBA App

(b)

Host OS

Hardware

DSP App

Bin/Libs

Host OS

Hardware

DBA App

Bin/Libs

Container

Bin/Libs

Aggregation
App

Host OS

Hardware

Aggregation
App

Bin/Libs

Fig. 1: (a) Bare metal execution of each softwarized application and (b) microservice architecture and chaining of each appli-
cation with containerization in access systems.

Tu3I.4 OFC 2024 © Optica Publishing Group 2024

Disclaimer: Preliminary paper, subject to publisher revision

Processing for signal data

Polling

Set 1 to update flag

Reset update flag to 0

Processing for signal data

…
…

…
…

Update flag Signal data

Container 1

Hardware

App 1

Container 2

App 2

Update flag Signal data

GPU memory

(a) (b)

(c)

Container 2 (10geponphy)

Container 3 (l1sim)

Scrambler

Header addition

0 Padding

FEC encoding

Header addition

0 suppression

descrambler

Header suppression

0 suppression

FEC decoding

Header suppression

0 padding

PON-frame
synchronizationPON-burst header addition

Frame decompositionFrame composition

Polling / Reset update flag
to 0

Container 1 (pktgenrcv)

Packet generation
Time and bit error

measurement

Set 1 to update flag

Set 1 to update flag

Polling / Reset update flag
to 0

Memory copy / bit error addition

Polling / Reset update flag
to 0

Set 1 to update flag

Set 1 to update flag

Polling / Reset update flag
to 0

(d)

10G-EPON PCS functions

Polling

Polling

Polling

App 1 App 2

Container 1

vNIC

Host OSveth

Bridge

Hardware

App 1

Container 2

vNIC

veth

App 2

GPU memory GPU memory

CPU memory CPU memory

Region for
container 1

Region for
container 2 Shared region

Fig. 2: (a) Function chaining with conventional inter-container communication, (b) proposed function chaining method with
inter-container shared memory, (c) sequence diagram of the proposed method, and (d) verification configuration apply-
ing the proposed method to 10G-EPON PCS functions.

Figure 2(b) illustrates the proposed physical-layer function chaining method based on inter-container shared
memory. This memory is divided to two regions: signal data and update flags. To implement the inter-container
shared memory, we utilize the NVIDIA CUDA application programming interfaces (APIs) generally provided for
inter-process communication (IPC). Specifically, after allocation of GPU memory by cudaMalloc, cudaIpcGet-
MemHandle creates an inter-process memory handle for the allocated GPU memory, and, from another process,
cudaIpcOpenMemHandle opens an inter-process memory handle and gets a GPU shared memory pointer. In the
inter-container shared memory, the signal data represents data passed between apps 1 and 2, and an update flag
is added to manage the timing of passing data between apps. Update flag entry of 1 signifies that processing
is completed and data can be passed, while 0 means that processing is not completed. Figure 2(c) shows the se-
quence diagram that illustrates how the update flag is utilized. App 2 repeatedly accesses GPU memory and checks
whether the update flag is 1 by polling to confirm the timing of passing data from app 1. After completion of signal
data processing, such as PCS functions, by app 1, the update flag is set to 1. When app 2 detects the change of the
update flag to 1, the flag is reset to 0, and app 2 starts its processing of the data. After that, the polling is repeated
again.

3. Performance evaluation
To evaluate the latency performance of the proposed method in combination with softwarized 10G-EPON PCS,
we implemented the container configuration shown in Fig. 2(d), which allows evaluation of the communication be-
tween three containers. The verification configuration was mainly composed of three containers named pktgenrcv,
10geponphy, and l1sim. 10geponpy was the container for implemented 10G-EPON PCS functions. Loopback eval-
uations were performed by adding the function of PON-burst header addition to downstream PCS functions. For
performance measurements, pktgenrcv was responsible for packet generation and time and bit error measurement,
while l1sim had performed memory copy and bit error addition. Three other containers, mps-daemon, exclusive-
mode, and memmng, were launched for initialization. The NVIDIA multi-process service (MPS), which allows
multiple processes to use a single GPU without interfering with each other, was launched by mps-daemon. For
this service, the GPUs must be set in exclusive mode by exclusive-mode. memmng creates the inter-container
shared memory used by the containers. As the container platform, docker and docker-compose tool were utilized.
To build and run GPU-accelerated containers, NVIDIA Container Toolkit was installed, and the docker image of
nvidia/cuda:11.4.3-base-ubuntu20.04 (published on Dockerhub) was utilized. The server was equipped with two
Intel Xeon E5-2699v4 CPUs and an NVIDIA Tesla A100 GPU.

Figure 3(a) shows the terminal screen when launching containers. The command of ”docker-compose -d” suc-
cessfully launch the six containers mentioned above, and the listed state retrieved by the command of ”docker-
compose ps” also shows that five containers are in the up state. Note that only exclusive-mode containers exit
after processing is complete. Figure 3(b) shows the latency performance of just function chaining without any

Tu3I.4 OFC 2024 © Optica Publishing Group 2024

Disclaimer: Preliminary paper, subject to publisher revision

Create and start containers

List containers

(a)

 32

 64

 128

 256

 512

 1024

 2048

 4 16 64 256 1024 4096

La
te

nc
y

(µ
s)

Chunk size (kByte)

Bare metal
Conventional containerization

Proposed containerization

(b)

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128 256 512 1024 2048 4096 8192

La
te

nc
y

(m
s)

Chunk size (kByte)

Bare metal
Conventional containerization

Proposed containerization

(c)

 0.125

 0.25

 0.5

 1

 2

 4

1 2 3 4 5 6 7 8 9

 1.04576 1.09691 1.1549 1.22185 1.30103 1.39794 1.52288 1.69897 2.04576 2.09691 2.1549 2.22185 2.30103 2.39794 2.52288 2.69897 3.04576 3.09691 3.1549 3.22185 3.30103 3.39794 3.52288 3.69897 4.04576 4.09691 4.1549 4.22185 4.30103 4.39794 4.52288 4.69897 5.04576 5.09691 5.1549 5.22185 5.30103 5.39794 5.52288 5.69897 6.04576 6.09691 6.1549 6.22185 6.30103 6.39794 6.52288 6.69897 7.04576 7.09691 7.1549 7.22185 7.30103 7.39794 7.52288 7.69897 8.04576 8.09691 8.1549 8.22185 8.30103 8.39794 8.52288 8.69897

La
te

nc
y

(m
s)

-log(BER)

133(kByte)
266(kByte)
532(kByte)
1064(kByte)
2129(kByte)

(d)

Fig. 3: (a) Terminal screen when launching containers, (b) latency performance of just function chaining without 10G-EPON
PCS functions, (c) latency performance of function chaining including 10G-EPON PCS functions, and (d) Latency
versus BER for each chunk size.

processing, which means the verification configuration that directly connects pktgenrcv with l1sim in Fig. 2(d).
We compared three methods, the conventional containerization, the method proposed in Section 2, and bare metal
implementation. The bare metal implementation ran each function on multiple processes and passed signal data
by sharing global memory without containerization. Latency was measured while changing the data length of the
transfer unit, chunk size. While the latency of the conventional method increases with the chunk size, that of the
proposed method is significantly low and constant regardless of the chunk size; it matches that of the bare metal
implementation. Figure 3(c) shows the latency when running 10G-EPON PCS functions. For example, when the
chunk size is about 128 kBytes, our containerization proposal achieved performance similar to that of bare metal
and compared to conventional containerization, it reduced the latency from 1.56 ms to 0.408 ms which means that
74 % latency reduction is achieved. Additionally, the impact of BER on latency was measured as shown in Fig.
refeva(d) since the computation load of the forward error correction (FEC) algorithm can increase depending on
the number of bit errors. The results show that latency was basically insensitive to BER.

4. Conclusion
This paper proposed low-latency physical-layer function chaining using inter-container shared memory. It
achieved low and constant latency for inter-container communication for various chunk sizes, and containeriza-
tion with 10G-EPON PCS functions demonstrated latency reductions, from 1.56 ms to 0.408 ms, compared to the
conventional method.

References
1. NTT Docomo, “White Paper 5G Evolution and 6G (Version 5.0)” https://www.docomo.ne.jp/english/corporate/technology/whitepaper 6g/
2. BBF, sTR-384 Cloud Central Office Reference Architectural Framework, Jan. 2018.
3. S. Das, ”From CORD to SDN Enabled Broadband Access (SEBA) [Invited Tutorial],” in Journal of Optical Communications and Networking, vol. 13,

no. 1, pp. A88-A99, Jan. 2021.
4. D. R. Mafioletti et al., ”Demonstration of a low latency bandwidth allocation mechanism for mission critical applications in virtual PONs with P4

programmable hardware,” 2022 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1-3, 2022.
5. T. Suzuki, et al., ”Demonstration of Fully Softwarized 10G-EPON PHY Processing on A General-Purpose Server for Flexible Access Systems”, Journal

of Lightwave Technology, vol. 38, Issue 4, pp. 777-783, Feb. 2020.
6. S. -Y. Kim, T. Suzuki, J. -I. Kani and T. Yoshida, ”Demonstration of Real-time Coherent 10-Gb/s QPSK Reception Implemented on a Commodity Server,”

2021 European Conference on Optical Communication (ECOC), pp. 1-4, 2021.
7. T. Suzuki, S. -Y. Kim, J. -i. Kani and T. Yoshida, ”Low-Latency PON PHY Implementation on GPUs for Fully Software-Defined Access Networks,” in

IEEE Network, vol. 36, no. 2, pp. 108-114, March/April 2022.
8. A., Gabriele, T. Cucinotta, L. Abeni, and C. Vitucci. ”Comparative Evaluation of Kernel Bypass Mechanisms for High-performance Inter-container

Communications.” In CLOSER, pp. 44-55. 2020.

Tu3I.4 OFC 2024 © Optica Publishing Group 2024

Disclaimer: Preliminary paper, subject to publisher revision

