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Abstract: We propose and demonstrate a symmetric optical crossbar array based on microring 

resonators (MRRs) to accelerate both the inference and training in deep learning, experimentally 

achieving a 93.3% classification accuracy in an inference task. © 2024 The Author(s) 

 

1. Introduction 

The further development of deep learning systems requires application-specific processors that can simultaneously 

improve the computation speed and reduce the power consumption. Photonic processors, capable of performing on-

chip matrix multiplications, are promising candidates due to the inherent parallel nature of light [1]. So far, various 

coherent and non-coherent schemes for realizing photonic matrix multipliers have been proposed and 

demonstrated [2–6]. While the non-coherent schemes do not support complex-valued matrices, they can significantly 

simplify the control complexity and are usually sufficient for many practical applications. The microring resonator 

(MRR) crossbar array is a promising non-coherent scheme because of its compact structure and the potential to 

accelerate both the inference and training in deep learning [6]. The MRR crossbar array can simultaneously implement 

an arbitrary non-negative real matrix and its transpose matrix without the need to reconfigure the MRRs. This unique 

property allows for direct on-chip backpropagation, which is essential for in situ training [7]. Previously, we have 

proposed and demonstrated a 4×4 silicon photonic MRR crossbar array [6]. However, because of its asymmetric 

structure, the insertion losses are not equal for all optical paths, which resulted in large errors in the matrices 

experimentally realized on the device. 

In this work, we propose and demonstrate a novel MRR crossbar array with a symmetric structure. All optical paths 

in the new structure have the same lengths and insertion losses, thereby significantly reducing errors caused by 

imbalanced insertion loss in the realized matrices. Using a 4×4 MRR crossbar array fabricated on a Si-on-insulator 

(SOI) platform, we experimentally demonstrate the inference and further simulate the on-chip training in a 3-layer 

neural network for classifying Iris flowers. 

2.  Principle 

The proposed symmetric MRR crossbar array is schematically shown in Fig. 1. For N×N matrices (N = 4 in Fig. 1), 

this approach uses N2 MRRs to represent the matrix and 2N Mach-Zehnder interferometers (MZIs) to generate two 

input vectors: 𝒙 and 𝝈 (referred to as the forward and backward signals, respectively). The forward signal 𝒙 represents 

the output from the previous layer and is multiplied with the weight matrix 𝐖, the backward signal 𝝈 represents the 

 
Fig. 1. Proposed optical crossbar array for matrix-vector multiplications. The matrix and vector are generated by microring resonators (MRRs) 

and Mach-Zehnder interferometers (MZIs), respectively. (a) By injecting a forward signal x, the crossbar array performs the multiplication between 

W and x. (b) By injecting a backward signal σ, the crossbar array performs the multiplication between WT (the transpose of W) and σ. 
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error signal backpropagated from the next layer and is multiplied with 𝐖𝐓 without reconfiguring the MRRs. Note that 

𝒙 and 𝝈 are not injected into the device at the same time. For each direction, N wavelengths are injected into each 

input port simultaneously. Each MRR is tuned to couple with one wavelength and the associated matrix element is 

represented by the transmittance of optical power at the drop port. At each output port, N optical signals coupled 

through N different MRRs are multiplexed into the same waveguide and detected by an on-chip or external 

photodetector. Therefore, the multiplication and accumulation operations are performed at the MRRs and the 

photodetectors, respectively. In this new structure, all optical paths by design have the same lengths and insertion 

losses for the forward/backward signal, respectively.   

3.  Fabricated device 

A 4×4 MRR crossbar array based on the proposed structure is fabricated on the SOI platform, as shown in Fig. 2(a). 

The propagation loss of the single-mode silicon waveguide is 1.3 dB/cm. The radii of all MRRs are 20 μm, 

corresponding to a free spectral range of 4.4 nm at a 1550 nm wavelength. For proof-of-concept demonstrations, 

thermo-optic phase shifters are used to tune the MZIs and MRRs. In future, ultralow-power electro-optic phase shifters 

can be used to significantly lower the power consumption [8]. The fabricated chip is wire-bonded and then packaged 

with an optical fiber array for stable characterizations. The MZIs typically have extinction ratios greater than 40 dB, 

as shown in Fig. 2(b). The extinction ratios measured at the drop ports of the MRRs are typically greater than 25 dB, 

as shown in Fig. 2(c). 

4.  Matrix implementation 

Four different wavelengths (λ1=1549.02, λ2=1549.77, λ3=1550.52, λ4=1551.27 nm) are combined externally and then 

injected into the input ports. The optical power at each output port is measured by a multi-channel optical power meter. 

By tuning the MRRs via thermo-optic phase shifters, we implement various matrices for the forward and backward 

directions, as shown in Fig. 3. In contrast to the result in our previous work [6], where the matrices for the forward 

and backward directions exhibited significant differences, here the desired matrices successfully realized for both 

directions with negligible distinctions. Undesired noise signals in these matrices are suppressed to the level of 

approximately -15 dB. 

5.  Inference and training 

 
Fig. 2. (a) A 4×4 MRR crossbar array fabricated on the SOI platform. (b) The MZI in port “In 1” is characterized. (c) Transmission spectra 

measured at the drop ports of four MRRs by sweeping the wavelength of the light injected into port “In 1”. 

        

     

      

      

      

   

          

      

    

 
Fig. 3. Experimental implementations of various matrices for forward and backward signals. 
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We construct a 3-layer neural network for classifying Iris flowers, as shown in Fig. 4(a). The network takes a 4-

element vector as the input and generates a 3-element vector as the output. The sigmoid function is used as the 

nonlinear activation function. The data set consists of 150 samples in total: 105 samples are used for training and the 

remaining 45 samples are used for test. We first trained this network on a computer using the stochastic gradient 

descent algorithm and achieved 97.8% accuracy on computer using the test data. Then, we use the MRR crossbar 

array to perform the matrix-vector multiplications and the computer to perform the nonlinear activation functions. 

Only forward signals are needed in the inference task. For the same test data, a high classification accuracy of 93.3% 

is obtained, as shown in Fig. 4(b). However, relatively large fluctuations of the output optical powers have been 

observed, which may be caused by the insufficiently stable temperature control of MRRs. In our experiments, we 

performed time-averaging measurements to reduce the noise. This issue may be solved by using electro-optic phase 

shifters that do not generate heat or applying feedback controls on current phase shifters. 

Due to the power fluctuation, on-chip training is not performed directly since it will require a significant amount of 

measurement time. Instead, we characterized all the MZIs and MRRs and created look-up tables that map the settings 

of MZIs and MRRs to the output power at each output port. Using these look-up tables, we simulate the on-chip 

training of the 3-layer neural network. Here, both the forward and backward signals are needed. The multiplications 

between matrix and vector elements are performed by fetching data from the look-up tables, the additions and 

nonlinear activation functions are performed by the computer. After the training, we perform the same inference tasks 

using the test data again. The results are shown in Fig. 4(c). While the inference results using the computer and the 

crossbar array are not exactly the same, relatively high accuracies of 91.1% are obtained in both cases.  

6.  Conclusion 

We have proposed and demonstrated a novel MRR crossbar array for accelerating both the inference and training in 

deep learning. Using a 4×4 MRR crossbar array to perform matrix-vector multiplications in a 3-layer neural network 

pre-trained on a computer, we obtained a high classification accuracy of 93.3% in the inference task. After a simulated 

on-chip training, we obtained an accuracy of 91.1% in the same inference task. 
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Fig. 4. (a) A 3-layer neural network for classifying Iris flowers. (b) Inference results after the neural network is trained on a computer. A high 
accuracy of 93.3% is obtained using the MRR crossbar array. (c) Inference results after a simulated on-chip training. An accuracy of 91.1% is 
obtained using the MRR crossbar array. 
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