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wavelength-parallel photonic tensor cores, and photonic memory for non-volatile tuning.
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1. Introduction

Optics plays a crucial role in interconnects in modern data centers by providing high-bandwidth, low-power,
low-latency, and reconfigurable data transmission. However, not all of these advantages naturally carry over to
optical computing, especially when compared with the state-of-the-art electronic processors [1]. One major issue
for optical computing is that there is no practical optical memory. That means E/O and O/E conversions and
DAC/ADCs are involved during memory access. As a result, even though optical computation can happen with
extremely low latency and energy consumption, the interfaces between optics and electronics can cause significant
bottlenecks. In a system-level study of a photonic artificial intelligence (AI) accelerator, only ∼10% of the overall
power is consumed in the optical devices [2]. The latency and energy consumption bottleneck caused by memory
access and transduction is even more severe when running large-scale models. Because of the constraint of the
wavelength of light, the footprint of optical multiply-accumulate (MAC) units (e.g., Mach-Zehnder interferometers
(MZIs) or microring resonators (MRRs)) are orders of magnitude larger than electronic transistors. Additionally,
due to the O(N2) scaling rule, large-scale optical weight matrices (e.g., 1024×1024 and beyond) don’t fit in a
single die and exhibit insurmountable insertion loss. As a result, large-scale optical matrices are computed by tiles
or blocks with time multiplexing, demanding intensive memory access to store the intermediate data.

Here, we address the issue mentioned above from two aspects. First, we introduce the tensorized optical neural
network (TONN) architecture by leveraging the tensor-train (TT) decomposition algorithm (as shown in Fig. 1)
to compress the less important parameters in deep neural networks (DNNs) [3]. Such architecture significantly
reduces the footprint, control complexity, and insertion loss of large-scale ONNs. It enables large-scale matrix
multiplication in a single clock cycle and eliminates undesired memory access. Second, we developed the photonic
memory for non-volatile tuning of the phase shifters based on charge-trap flash memory [4] and memristor [5]
mechanisms, demonstrating the in-memory computing concepts.

2. Tensorized Optical Neural Networks

2.1. Architecture and Design Considerations

The idea of TONN originates from the model compression with pruning technique. The pruning technique, lever-
aging weight sparsity, has been widely applied in efficient AI computing products [6]. Power-gating the less

Fig. 1. Tensor-train decomposition.
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Fig. 2. (a) Tensorized optical neural network architecture with parallelisms in space and wave-
length domains. (b) Wavelength-parallel photonic tensor core based on wideband MZI mesh. (c)
Wavelength-parallel photonic tensor core based on multi-FSR MRR crossbar array.

important connections in, e.g., MZI meshes, only reduces the power consumption (assuming volatile tuning) but
not the footprint and control complexity [7]. TT decomposition can be seen as a regulated pruning method or,
specifically, a singular value decomposition for multi-dimensional matrices (tensors).

Since tensor operations don’t naturally exist in 2-dimensional photonic chips, we have invented the TONN
architecture [3], a photonic implementation of TT-decomposed large-scale weight matrices (Fig. 2(a)). In such
architecture, the tensor products are emulated by representing the tensor indices in the wavelength and space
domain and multiplying them with an array of wavelength-parallel photonic tensor cores. Several tuning knobs,
including the factorization of the scale, TT-ranks, and the number of wavelengths, control the chip layout of
TONN. With the folded layout scheme, 2048×2048 and 4096×4096 TONNs can fit in a single DUV stepper die.

2.2. Wavelength-Parallel Photonic Tensor Cores

The TONN architecture requires the photonic tensor cores to provide identical weight values among different
wavelength channels. The key point to making MZI meshes wavelength-parallel is that the building blocks, 2×2
MZIs, need to be balanced in two arms, as shown in Fig. 2(b). This way, the bandwidth of 2×2 MZIs can be
tens of nanometers, and the MZI meshes can be wideband. The second option for wavelength-parallel photonic
tensor core is to exploit the multiple free spectral ranges (multi-FSRs) of the MRR crossbar array [8], as shown
in Fig. 2(c). Due to the periodicity of the resonances, the lineshapes of the MRR spectra at resonances in different
FSRs are similar, providing nearly the same weight values. The multi-FSR MRR crossbar option has a smaller
footprint and easier programming but requires more wavelengths than the wideband MZI mesh option.

3. Photonic Memory for Non-Volatile Tuning

We have developed two photonic memory mechanisms on HPE’s densely integrated III-V-on-Si
metal–oxide–semiconductor capacitor (MOSCAP) platform (Fig. 3(a-c)). The first mechanism, charge-trap flash
memory (CTM) [4], uses a layer of insulating material to trap and store electrons and holes and alter the ef-
fective index of the optical mode by plasma dispersion effect. Fig. 3(d) shows the energy-band diagram during
the writing process. Fig. 3(e) and (f) shows the measured optical spectra of CTM MZI and two cascaded double
ring structures, demonstrating tuning between the initial, volatile, non-volatile, reset, and final states. The second
mechanism heterogeneously integrates a memristor with III-V-on-Si phase shifters [5]. The device switches its
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Fig. 3. (a) 3-D schematic of the III-V-on-Si MOSCAP phase shifter. (b) SEM cross section. (c)
HRTEM image of the layer stack. (d) Schematic of energy-band diagram for CTM with positive
bias. (e) Spectra for different states of CTM MZI. (f) Spectra for two cascaded double ring structures.
(g) Schematic diagram of the forming and rupturing conductive filaments within the memristor. (h)
Measured spectrum of the memresonator while a 2 V read voltage is applied in different states.

resistance by applying set/reset switching voltages by creating conductive filaments within the oxide material, as
shown in Fig. 3(g). The change of resistance leads to an increase in the current and, subsequently, the carrier den-
sity within the optical waveguide, causing an enhanced plasma dispersion effect, tuning the resonant wavelength
of the memristive MRR, as shown in Fig. 3(h). These photonic memory enables nearly-zero power consumption
for DNN inference and can seamlessly integrate with other essential components for photonic AI accelerators,
such as quantum dot comb lasers, III-V/Si MOSCAP ring modulators, Si-Ge avalanche photodetectors, and in-
situ III-V/Si light monitors. We believe TONN with photonic memory will be a significant step towards breaking
the latency and energy consumption bottleneck caused by intensive memory access for the photonic AI accelerator.
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