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Abstract: We reconstruct a 48 Gbit/s nonlinearly distorted optical signal using an artificial neural 
network (ANN). The digital ANN execution exceeds traditional nonlinear equalizers, while its 
analog acceleration using plasmonic-organic-hybrid modulators surpasses conventional digital 
linear equalizers. © 2024 The Author(s)  

 
1. Introduction 

The current mitigation strategies for linear and nonlinear distortions in optical fiber communication links 
predominantly rely on digital hardware. To cope with increasing data speeds, high-speed electronics are required, 
which results in increasing costs and power demands. Traditional algorithms, based on Volterra series and digital 
backpropagation algorithms, are now being re-evaluated in light of these aspects. Recent studies have indicated that 
artificial neural networks (ANNs) can significantly trim down computational power requirements [1]. 

Executing multiplication and accumulation (MAC) operations on photonic platforms promises not just 
computational acceleration but also a significant reduction in power consumption [2, 3]. Combining the advantages 
of ANNs with the advantages of photonic computing will even further decrease the power consumption and increase 
the computational speed. The most organic way to address these challenges is by performing signal processing directly 
on the analog optical signal. Recently, this approach has been successfully demonstrated by processing 16 Gbit/s [4] 
and 40 Gbit/s [5] optical signals with photonic perceptrons. 

In this work, we harness for the first time the characteristics of plasmonic-organic-hybrid Mach-Zehnder 
modulators (MZMs) in a photonic accelerator. MZMs map the electrical signal into the optical domain, where the 
MAC operations are executed. Recognized for their large bandwidths reaching up to 500 GHz, atto-joule energy 
consumption per bit, and compact footprints [6, 7], plasmonic MZMs present a promising way to further increase the 
computational speed compared to their photonic counterpart [8]. On our chip, the MAC operation of an ANN that 
counteracts the nonlinear effects of a driver amplifier is executed analog on an integrated photonic chip. Notably, the 
analog-processed signal with a line rate of 48 Gbit/s surpasses the digital linear filter in terms of signal-to-noise ratio 
(SNR). Furthermore, its digital counterpart outperformed standard nonlinear filters while keeping the computational 
demands low. 
 
2. Device Concept and Experimental Setup 

We acquired the training data for the digital ANN using a standard intensity modulation and direct detection (IM/DD) 
setup as shown in Fig. 1(a). The transmitted bits were randomly generated, in order to avoid overfitting that may occur 
with pseudo-random bit streams [9]. The nonlinearities arose from the electrical amplifier that drove a commercial 
MZM with a 30 GHz 3 dB-bandwidth. The ANN training used 10% of the symbols from the sampled and timing-
recovered signal, denoted as 𝑠Rx. The ANN's input layer processes four time-delayed symbols with a two-fold 
oversampling. The hidden layer has four neurons, each with a sigmoid activation function. In contrast, the output layer 
consists of a single neuron with a linear activation function. The ANN's training objective was to ensure that its output 
mirrors the transmitted symbol, see Fig. 1(b). 

In the optical ANN (OANN) evaluation, see Fig. 1(c), the hidden layer's output was computed offline using the 
recorded data 𝑠Rx. These four resulting signals were then relayed to the plasmonic MZM, which maps them to the 
optical intensity of a carrier at frequency 𝑓௜. The index 𝑖 indicates the i-th laser. The weighting process is facilitated 
by a thermo-optical (T/O) MZM placed before the plasmonic MZM. A microscope image of the chip is shown as inset 
in Fig. 1(c). Post-chip signals sharing weight signs, represented by 𝑠+ and 𝑠- are combined, amplified, and directed to 
two photodiodes (PD). Due to the significant gap between the frequencies 𝑓௜  compared to the PD's bandwidth, the PD 
captures the weighted sum of the signals. After recording with a digital sampling oscilloscope, the two signals are 
subtracted from each other and the linear activation function, including the biases, is applied. An additive white 
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Gaussian noise (AWGN) channel is fitted to the resulting signal in order to quantify the performance of the ANN by 
the SNR.  

As a baseline for comparison, the pre-recorded signal 𝑠Rx was further propagated through a digital signal 
processing chain. This included timing recovery (TR), a T/2-spaced feed-forward equalizer (FFE), and a Volterra 
equalizer. To further compare the performance, we also executed the ANN digitally (DANN) by processing 𝑠Rx, see 
Fig. 1(a). At each step, an AWGN channel was fitted to the signal. The resulting SNR estimation is used to compare 
the performance.  
 
3. Experimental Results 

Our results demonstrate that the DANN outperforms both the (digital) FFE and the Volterra equalizers in terms of 
SNR. Moreover, the OANN outperforms the FFE in SNR metrics. The signal being processed had a rate of 16 GBd 
and utilized an 8-PAM modulation format, effectively achieving a 48 Gbit/s data rate. 

In Fig. 2(a), the SNR values after the TR, FEE and Volterra are depicted in red, yellow, and green bars, 
respectively. The light blue bar shows the SNR after the DANN processes the TR signal. To elaborate, the SNR after 
TR, FEE, and Volterra read 12.6, 15.4, and 21.4 dB, respectively. Meanwhile, the SNR after the DANN reads 23.4 dB, 
corresponding to a gain of 2 dB compared to the Volterra equalizer. 

In terms of their configuration, the FEE employed 151 taps, while the Volterra equalizer used 151, 11, 51 taps for 
its first, second and third order, respectively. In contrast, the ANN only used 8 taps at its input, 4 neurons in the middle 
layer and a single linear neuron at its output layer. Our findings indicate that in the context of our studied case, the 
ANN does not only surpass FEE and Volterra in performance, but also with reduced computational demands.  

 

Fig. 1. (a) Schematic representation of the signal (𝑠Rx) acquisition. After timing recovery (TR), 10% of the symbols are used 
to train the ANN. 90% of the symbols are used to test the ANN both, digitally and optically. As a baseline, the SNR is 

estimated after TR, linear filter (FEE) and Volterra series. (b) Schematic of the ANN. As an input, it takes four symbols with 
an oversampling of two. (c) Analog ANN concept: The optical signal after the channel directly enters an on-chip split and 
delay section. Subsequently, the signal undergoes weighting and phase adjustments to be acquired in a PD. An activation 

function (AF) is then applied on the electrical signal. Experimentally, the outcomes were computed offline using the 𝑠Rx data. 
The resultant signals drive the four plasmonic MZMs, modulating the carrier's intensity. Weight application is handled by the 

T/O MZM. After merging, the weighted sum is captured. The weight's sign is retained by separately documenting the sum 
corresponding to that weight, i.e., 𝑠+ and 𝑠-. The difference between and 𝑠+ and 𝑠- was calculated offline and correspond to 

the ANN’s output 𝑠̂. The inset provides a microscopic view on the chip. 
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Further investigations were conducted by executing the ANN on the plasmonic-enhanced optical accelerator, 
referred as OANN. As shown by the blue bar in Fig. 2(a), the signal after the OANN had an SNR value of 16.9 dB. 
This represents a decrease of 4.5 dB when compared to the DANN, but it still manages to outperform the digital FEE 
by 1.6 dB. The bit-error rate decreased from 8.0∙10-2 after the FEE to 3.8∙10-2 with the OANN, which is below the SD-
FEC limit. 

In Fig. 2(b), the histogram displays the distribution of the recorded TR and OANN signal. The TR signal is 
represented by the red bins. Notably, 5 out of the 8 levels are distinctly separated, while the outer symbols appear 
compressed. The OANN, depicted in pink, effectively mitigates this compression. 

Focusing on Fig. 2(c) and (d), we plotted the traces for signals 𝑠+ and 𝑠-. The expected DANN trace is colored in 
blue, whereas the recorded OANN trace is shown in pink. Quantitatively, the root mean squared errors amounted to 
0.119 for 𝑠+ and 0.09 for 𝑠-. 
 

4. Conclusion 

Our study marks the first utilization of plasmonic MZMs for directly processing analog optical signals. The bandwidth, 
power consumption, and compact nature of plasmonic MZMs make them a preferable alternative to their photonic 
counterparts. Through our investigations, we have observed that the signal processing using an ANN outperforms 
traditional equalizers like FEE and Volterra, both in terms of SNR and computational requirements. Furthermore, 
when executed on a plasmonically enhanced optical accelerator, the ANN, although slightly reduced in performance 
compared to its pure digital counterpart, still surpasses the digital FEE.  
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Fig. 2. (a) Comparison of SNR values after processing through TR, FEE, Volterra, and DANN with the TR signal achieving 
an SNR of 12.6 dB, FEE with 15.4 dB, Volterra with 21.4 dB, and DANN showing a notable increase to 23.4 dB. The 
application of DANN on a plasmonic-enhanced optical accelerator results in an SNR of 16.9 dB. (b) Histogram of the 

recoded TR and OANN signal. (c) and (d) Signal traces for 𝑠+ and 𝑠-, respectively, with the expected DANN trace in blue 
and the recorded ANN trace in pink. 
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