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Abstract: Examining the impact of AI workloads on system performance, we reapply Moore’s 
law at the system level to uncover the implications for photonic components and the drivers that 
will propel the photonic industry forward. 
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1. Moore’s Observation 

Moore’s prediction in 1965 for the relationship between transistor density over time has been used to guide the 
semiconductor industry ever since. The success of Moore’s guidance was that it was ambitious and realistic at the 
same time and provided the controlling “tact frequency” for growth rate in a highly complex integrated circuit 
supply chain which became a self-fulfilling “law”. Today, a doubling of performance every two years has become 
the default standard by which performance improvements are measured and future roadmaps are determined. 

Moore’s law has been re-expressed over time. Originally focused on transistor count and then density, it 
evolved to encompass logical operations (instructions per second) per chip. The doubling of semiconductor 
performance every two years has continued for over four decades of technology development. It is expected that 
innovations in system performance will continue to propel performance growth forward at the same rate. More 
recently Moore’s law has driven innovation beyond just the transistor-level, with the incorporation of new multi-
chip-module technologies known as 2D, 2.5D, and 3D.  

In this work we discuss the impact of AI/HPC workloads and the growth in model size on the required system 
performance. By redefining a version of Moore’s law at the system level we explore the implications for photonic 
components that will be needed to support system growth for AI/HPC clusters. Re-applying Moore’s guidance in 
this context, we analyze the drivers that will propel the photonic industry and explain the technology requirements 
that will be needed for the next decade. 

 

2.  System Performance and Moore’s Law 

System performance is an important performance metric because it is what the end user experiences. Before 2004, 
system performance improvements were mostly dominated by the regular improvements in transistor density, in line 
with the original expression of Moore’s law, and an increase in chip clock-frequency according to Dennard scaling 
[1,2]. These advances in silicon technology directly benefited performance at the system level. Systems designs 
therefore focused on incorporating these exponential improvements rapidly through flexible designs, and increased 
programmability.  

This led to rapid increase in the performance of large computer systems as can be seen in the performance 
charts shown in Figure 1. [3]. Since the ending of Dennard scaling around 2004 [1,2] the performance increase of 
the individual components due to clock-speed slowed, but was compensated for by the introduction of multi-core 
chip architectures allowing system performance to keep improving. As can be seen in Figure 1., the performance of 
HPC systems consistently grew at the rate of 3.3 times every 2 years until around 2012 when the growth rate 
reduced to 2.2 times every 2 years. This can also be explained by a limitation of available memory bandwidth 
known as the “memory wall” [4,5] and interconnection transfer rates which were only scaling up at 1.4 times every 
2 years. System designs were forced to scale out to wider parallel interconnections to add additional memory and 
interconnect compute cores. This increasing disparity between the growth in computer performance of HPC systems 
and GPU’s in comparison to the growth in memory bandwidth and interconnection bandwidth can be seen in   
Figure 1. 

From a system perspective, Moore’s law does not fully capture the performance growth because it does not 
capture the other design factors which are equally important in a system such as; system size, power consumption, 
cost efficiency, I/O bandwidth, and the control aspects. Full system design includes the on-chip memory buses, 
transport performance, as well as the I/O off-the-chip, and the connection between chips. These key factors are 
perhaps even more critical because since the 1980s, the movement of logical bits has consumed more energy than 
the processing of the bits themselves.  
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Fig. 1. Performance versus time for: the sum of TOP500 supercomputers in floating point operations per 

second (FLOPS), GPU and TPU peak performance in FLOPS, memory bandwidth in GB/s for generations of 
GDDR & HBM, and interconnection bandwidth in Gb/s for PCIe, IB, & NVlink. 

3. Impact of AI/ML Workloads 

A discussion of AI/ML workloads and its impact on system performance is highly complex and dependent on many 
factors including the algorithms, software-models, software-compilers, and specific hardware architecture used. 

Large Language Models (LLM) and Deep Learning and Recommendation Models (DLRM) are among the most 
used by hyper-scale datacenter companies. The size of these AI models has been increasing at approximately ten 
times per year, far outpacing the increase in compute performance [5,6]. To accommodate the large size of models, 
the computer chips are optimized for the particular needs of the model type, focusing on specific requirements for 
the accelerators (xPU/GPU), dedicated network interface (NIC), and memory interconnect (CXL/PCIe, HBM’s, 
DDR’s). In addition, a unique architecture design is used for the workload which is referred to as Domain Specific 
Architecture (DSA) [5]. In this case the orchestration, control, and interconnection of components becomes a design 
tool to improve the system performance. This is referred to as the co-design of AI hardware and software.  

It's clear that interconnects play an important role in AI/HPC system design because of effects like the ‘memory 
wall’ [4,5,7]. For low operational-intensity workloads (i.e. those with low compute to memory ratio) cluster designs 
are often memory bandwidth limited rather than compute-limited [5,8].   

4.  Consequences for Optical Interconnects 

The trends in system performance of both AI and HPC systems drive the requirements for all the components 
including optical interconnects and therefore provide a useful predictor for interconnect requirements. Assuming AI 
clusters grow at similar rates to those of HPC and GPUs, this would indicate AI cluster performance improvement of 
2 to 3 times every 2 years. An analysis of growth rates in switched network architectures shows a similar behavior 
with switching capacity increasing by a factor 2 every 2 years. Since interconnect bandwidth has historically scaled 
up at a rate of only 1.4 times every 2 years (equivalent to doubling every 4 years), then systems must compensate for 
the factor (2/1.4) shortfall by also scaling out at a rate of 1.4 times every 2 years (doubling the number of 
interconnects every 4 years) to achieve a total interconnect capacity growth of 2 times every 2 years. 

AI/HPC systems consist of several types of interconnections of which the most important are listed here: 

1. Scale-out at the system level is achieved by interconnecting the compute-nodes through a switched network 
(today up to 1 Tbit/s/GPU). Optical fiber technologies are applied today. Depending on the network 
architecture optical reaches of up to 2km might be needed [9]. 

2. The back-end network manages tightly interconnected communication between compute-cores that are 
collectively working a compute-problem. Sometimes that is also referred to “scale-up”. This is a highly 
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interconnected network (currently around ~4-8 Tbit/s/GPU) within a rack. As the domain of the GPU’s that 
tied to a scale-up network is expected to grow, optical interconnects will become necessary for this type of 
network in the next few years. Optical technologies are viewed as an enabler for future large scale-up 
domains, but are still relatively power inefficient in comparison to copper for short reach (<6m) [9] 

3. CXL/PCIe switches that interconnect memory, CPU and GPU’s. Today these are implemented with PCIe 
copper-based technologies. 

4. Memory bandwidth between HBM and chip (currently up to 38.4Tbit/s/GPU) with short-reach and wide-
bus interconnections [10].    

The requirements on front-end and back-end networks have different optimization points in terms of bandwidth, 
reach, and latency. Scale-up networks today are typically located within a shelf or rack with very high bandwidth 
(several Tbit/s) and currently use copper connections. In order to address the opportunities for much larger scale-up 
designs for GPU’s, optics will need to be delivered with ~10Tbit/s across several racks (~20m) at increased 
manufacturing volumes. 

Over the past decade the scale-out network switch capacity and the I/O capacity has grown by increasing the 
number of layers of switches required to connect all the GPU’s.  Since switch capacity will be limited, as the 
network grows, additional layers will be required to support the end-to-end flows. These additional switch layers 
will require interconnect and therefore increase the total number of interconnects further. The exact number of 
additional interconnects that are required depends on the type of switch architecture used and the number of switch 
layers.  

5.  Conclusion 

Anticipating a doubling of HPC systems and AI cluster performance every two years, in line with Moore’s law, can 
provide guidance to the photonics industry. If historical growth of interconnect bandwidth can continue to double 
every four years, then the number of interconnects needed to scale out the systems will also need to double every 
four years to achieve a combined doubling of capacity every two years. This will dictate new requirements for 
interconnects in the following areas:  

1. Increased capacity of data connections (particularly GPU-networks for scale-out networks)  
2. Number of connections will increase the need for volume manufacturing techniques 
3. Increased length or reach of each link as the system size grows 
4. Miniaturization along edge or beach-front to increase I/O density 
5. Improved energy efficiency as power is a limiting factor  
6. Increased cost pressure as volume increases 

Many of the above requirements are familiar to the photonics industry.  Photonics will play a critical role in the 
growth of HPC systems and AI clusters to provide the data movement in larger and more complex systems. Moore’s 
law can provide guidance for future roadmaps including; data-rate, miniaturization, energy efficiency, cost 
reduction, and manufacturing volume.  
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