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Abstract: A Latent Spatio-Temporal Graph Model is proposed for failure prediction in optical 

networks, which can effectively learn both spatial and temporal distribution of real equipment 

performance data and achieve F1-score up to 0.9745. © 2023 The Author(s) 

 

1. Introduction 

In recent years, machine learning techniques have been widely applied to failure prediction in optical networks [1]. 

Researchers have explored the failure prediction performance of Gated Recurrent Unit (GRU), Random Forest, and 

eXtreme Gradient Boosting algorithms, with a focus on capturing time series data [2-3]. However, in real optical 

network systems, in addition to time series data, there is also topological information that contains node 

performance parameter information and connectivity information. These pieces of information are crucial for 

understanding and managing the structure, performance, and operation of optical networks. Therefore, there is an 

urgent need to propose a method that can simultaneously learn the spatio-temporal information of optical network 

device data to improve failure prediction performance. 

Typical recurrent neural network methods are usually employed to learn the correlations between time series 

information and struggle to capture spatial information. On the other hand, graph neural network (GNN) methods 

are typically used to learn spatial information [4], but they struggle to capture time series information. Unlike typical 

GRU and GNN approaches, the Latent Spatio-Temporal Graph Modeling (LSTGM) is an integrated model that 

combines spatial graph convolution and time series model [5]. It can learn temporal and spatial information from 

time series data without the need for prior topological knowledge. 

In this paper, a failure prediction scheme based on LSTGM is proposed. The proposed scheme is evaluated on a 

realistic dataset from operational networks to assess its predictive performance. Typical classification metrics such 

as F1-score, accuracy (ACC), false negative rate (FNR), and false positive rate (FPR) are employed as evaluation 

metrics. Additionally, the failure prediction performance of the GRU algorithm that exclusively learns temporal 

information and the GNN algorithm that exclusively learns topological information are compared with LSTGM. 

Experimental results demonstrate that the LSTGM approach can effectively capture the spatio-temporal 

characteristics of failure data and achieve superior predictive performance.  

2. LSTGM-Based Spatio-Temporal Failure Prediction 

The Schematic of LSTGM-based spatio-temporal failure prediction scheme is shown in Fig.1. The implementation 

process of the scheme mainly includes three key steps: data collection, spatiotemporal learning and failure 

prediction. Firstly, the data acquisition module is used to collect operational data from optical network devices. 

Secondly, the LSTGM module is employed to learn the temporal and spatial features of the input data. Finally, the 

prediction module is utilized to forecast the operational state of the devices. LSTGM module that aims to reveal 

potential spatial correlations between multiple optical sensor variables by learning vertex embeddings. Meanwhile, 

under the framework of the improved GRU, the module captures the unique temporal characteristics of each variable. 

Specifically, spatial features between multiple data variables are extracted by spatial graph convolution to aggregate 

the vertex information of the neighborhood while maintaining the weights sharing attribute, as shown in Fig. 1(c). 

We utilize the adjacency matrix to determine the importance of neighbor vertices in spatial graph convolution. 

Learning to aggregate features is an essential part of the LSTGM module. Define the neighbor set of vi as 
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with Cin and Cout denoting the number of input channels and output channels, respectively. Given the input signal Xt, 

the aggregated feature at vi is computed as follows: 
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Fig. 1: (a) Data collecting, (b) Spatio-Temporal learning and failure prediction, (c) Device Graph information learning by vertex 

embedding, (d) Latent Spatio-Temporal Graph Model (LSTGM).  

where the normalizing item K(vi,vj)  is equal to the cardinality of the subset that contains vi and vj . It is utilized to 

balance the contributions of different subsets to the output values. In order to solve the problem of indistinguishable 

convergent vertex features and over smoothing in backpropagation, the key concept of residual learning is adopted 

to facilitate a deep GNN structure. A Residual Graph Convolutional Network block (RGCN) is constructed by 

performing skipping connections on three cascaded Graph Convolutional Network (GCN) layers with ReLU 

activation functions. The adjacency matrix is then attained by calculating the pairwise embedding similarities. 

Formally, we denote the embedding matrix as 
1( ,..., )T

nE e e= , where en is the embedding vector for the vertex vi. To 

jointly model the spatio-temporal dependency, we replace the matrix multiplications in Gated Recurrent Units (GRU) 

with RGCN. Then, the details of the spatio-temporal feature extraction process are formulated as follows: 
 

1( Re )[ , ]t t te RGCN LU GCN X H −=  (2) 
 

1( Re )[ , ]t t tu RGCN LU GCN X H −=  (3) 
 

1(tanh )[ , ]t t t tH RGCN X e H −=  (4) 
 

1(1 )t t t t tH u H u H−= −     (5) 

where Ht ∈ RN×Ch is the hidden state of LSTGM, with Ch denoting the hidden state size. ◦,   and ⊕ denote 

function composition, element-wise multiplication, and element-wise addition, respectively. σ (·), ReLU (·) and tanh 

denote the sigmoid, ReLU and tanh activation function, respectively. The overall structure of LSTGM is presented 

in Fig. 1(d). The additional GCN layers are used to transform the vertex signals into the hidden state size. 

3. Experimental Results and Analysis  

In this section, the performance of LSTGM-based failure data prediction in optical networks is evaluated and 

analyzed. Our dataset is collected over a set of 186 nodes of a real OTN network operated by the Intelligent Network 

Innovation Center of Chinaunicom, where each node houses multiple boards and each board contains multiple ports. 

Data is failure-marked based on expert experience, and the ratio of failure data to normal data is 5%. Performance 

data for each board is recorded every 15 minutes, and the overall data collection period spans between June 1st 2023 

and July 1st 2023. After eliminating invalid and missing values, 19 valid features remained. 

Firstly, the change of the loss function of the proposed LSTGM method at different times is shown in Fig. 2(a). 

Moreover, by counting the confusion matrix, we can obtain the predicted accuracy of each day. During the training 

process of the model, the curves of the training loss function and the testing loss functions are gradually parallel to 

the X-axis, as well as accuracy, indicating that the model converges well. 

Secondly, in order to evaluate the effect of the failure prediction scheme based on LSTGM learning spatio-

temporal features, we conduct a comparative analysis of LSTGM with typical methods such as GNN and GRU. We 

evaluate the performance of the proposed scheme using classic statistical indicators including ACC, F1-score, FNR, 

and FPR, as shown in Fig. 2(b). It is clear from Fig. 2(b) that the LSTGM-based approach outperforms other 

methods on metrics such as ACC, F1-score, FNR, and FPR. In contrast, there was a 2.74% improvement in 
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score compared to the GNN method, which solely learned spatial features, and a 1.23% improvement compared to 

the GRU method, which solely learned temporal features. This suggests a significant enhancement, demonstrating 

the LSTGM method's capability to effectively learn the temporal and spatial characteristics of optical network 

device data simultaneously. 

Moreover, we compared the number of OTN boards accurately and incorrectly predicted by the LSTGM 

method in the last 10 days of failure prediction, as shown in Fig. 2(c). Through the analysis of Fig. 2(c), it is found 

that the operating states of most OTN boards are correctly predicted based on the LSTGM method. The lowest 

accuracy in the last 10 days is 0.9969. Therefore, the proposed scheme can effectively realize failure prediction. 

Furthermore, changes in the number of days predicted for failure also have a significant impact on the results. 

To explore the effect of prediction days on results of LSTGM method, we compared the results of ACC and F1-

score predicted for 1-10 days, respectively, as shown in Fig. 2(d). According to the analysis, it is observed that the 

scores of the predictive metrics decrease with an increase in the prediction time. When predicting only 1 day, the F1-

score and ACC are the highest, while the scores are the lowest when predicting 10 days. 

4.Conclusion 

We proposed a LSTGM-based failure prediction scheme for optical networks, which can effectively learn both 

spatial and temporal features of data in optical networks. Moreover, we compared the influence of different forecast 

days on LSTGM algorithm, and analyzed the number of correct and incorrect prediction boards. The classical 

predictors (accuracy, F1-score, false negative rate, false positive rate) were used to compare LSTGM with GRU and 

GNN methods, which proved the ability of LSTGM to learn temporal and spatial characteristics at the same time. 
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Fig. 2:(a) Loss function for the model; (b) Prediction results on different methods; (c) Number of predicted boards compared with actual 

boards, prediction accuracy, and confusion matrix based on LSTGM; (d) Prediction index score under different forecast days. 
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