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Abstract: We propose an unsupervised machine learning (ML) approach using field data for the 

detection of optical layer anomalies. We show how multivariate ML models can forecast hard 

failures by detecting soft failures. © 2024 The Author(s) 

 

1. Introduction 

The rapid development of emerging technologies and online services, such as real-time video and cloud services, leads 

to the drastically increasing capacity demand and infrastructure complexity as well as a need for high network 

flexibility. In such a context, any network failure can lead to massive loss of data and customers churn due to non-

compliance with the service level agreements. It is thus particularly important to ensure high quality of service (QoS) 

for all applications requiring high bandwidth and/or ultra-low latency and jitter. 

Machine learning (ML) has been proposed to enable proactive fault management in optical networks. Network faults 

can be categorized into hard failures linked to immediate service disruptions, and soft failures which are linked to 

gradual quality of transmission (QoT) degradations in optical networks. The main objective of an effective ML-based 

fault management system is to detect, identify and localize soft failures in order to prevent them from deteriorating to 

hard failures. In [1], the authors proposed a hybrid unsupervised and supervised ML approach for anomaly detection 

in optical networks. Their framework analyzes patterns of experimental optical performance monitoring (OPM) data 

using an unsupervised data clustering module. Then, the learned patterns are fed to a supervised data regression and 

classification module for online anomaly detection. The authors in [2, 3], similarly to aforementioned authors, used 

experimental imbalanced data with a semi-supervised approach to detect failures in optical networks, and synthetically 

generated data with encoder-decoder long short-term memory (ED-LSTM) to model and predict the evolution of soft 

failures for several days with the aim to trigger proactive maintenance and component replacement actions before hard 

failures occur. In [4, 5], the authors used optical performance monitoring data gathered from production networks. 

The first study showed that it was possible to use ML techniques to predict the loss of signal with good precision 1 to 

7 days before they occur. Similarly, the second study presents an ML-based model to detect performance degradations 

in optical networks. In both studies, the authors used a supervised learning approach to detect QoT degradations in 

the OPM data, which required a labeling phase to perform loss of signal forecast and anomaly detection tasks. 

In this study, we propose the use of three unsupervised learning techniques to detect anomalies from the OPM data. 

Then we use the labeling principles based on the alarm parameters in the dataset as in [4], to visualize and compare 

the results of the ML-based anomaly detection models.  

2. Methodology 

2.1 Anomalies in OPM data 

Fig.1 shows the OPM metrics for one lightpath with the anomalies defined from alarms over 4 years. In the context 

of this study, anomalies represent instances of OPM parameters that do not conform to the majority of values recorded 

over a collection period. Point anomalies are single data points that are significantly different from the rest of the data. 

Contextual anomalies are instances that deviate from the other data points in a particular context, while being 

 

Fig. 1. Anomalies observed in the OPM metrics for one lightpath during 4 years. UAS: unavailable seconds; HCCS: high correction 

count seconds; OPR: optical power received; DGD: differential group delay 
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considered normal in a different context. A group of data points which, taken individually may be considered normal, 

but deviate considerably from the rest of the data points when gathered together, represent the collective anomalies 

[6].  A point-anomaly detection approach was adopted for the algorithms implementation as opposed to a collective 

or a contextual anomaly detection approach.  

2.2 Dataset Description and Preprocessing 

For this study, we used a dataset of daily binned PMs collected from equipment in the production network of a North 

American Service Provider over 4 years. The PM metrics are pulled from specific ports of these devices linked to 

specific facilities. We gathered instances for the optical transport module services among others (Ethernet, OC-n, …), 

encapsulated by the optical transport network. Amongst these parameters, the Q-Factor for the signal quality, the 

optical power received (OPR) and the differential group delay (DGD) were the ones used to build our anomaly 

detection models. Moreover, the high correction count seconds (HCCS) and the unavailable seconds (UAS) alarm 

parameters were used to identify ground truth anomalies in the OPM time series [4,7,8]. While the equipment’s 

unavailability duration in seconds is reported as UAS, the duration in seconds where the number of errors to be 

corrected by forward error correction exceeds some threshold is referred to as HCCS. We structured the data as 

multivariate time series, using the collection date of each record. Missing data was replaced using a moving average 

using a 7-day sliding window. Then we normalized the data using the preprocessing module in scikit learn [9]. A 

correlation analysis using the stats module from the scipy library revealed that the correlation between the OPR and 

DGD parameters with the Q-Factor is statistically significant. The Pearson coefficients calculated for the OPR and 

DGD parameters with regards to the Q-Factor were 0.48 and -0.18, respectively. 

2.3 Unsupervised learning-based anomaly detection 

We implemented three anomaly detection models utilizing the density-based spatial clustering of applications with 

noise (DBSCAN), one-class support vector machine (OCSVM) and isolation forest (IF) techniques. Three 

performance metrics commonly used with clustering techniques have been used to compare the three models. The 

silhouette score (SS) allows to validate consistency within clusters of data. It ranges from -1 to +1, with higher values 

indicating a well-matched instance to its own cluster. The Calinski-Harabasz index (CH), also known as the variance 

ratio criterion, is the ratio of the sum of the dispersion between-clusters and within-cluster for all clusters (where 

dispersion is defined as the sum of distances squared). Higher CH index means well-separated clusters. The Davies-

Bouldin index (DB) measures the average similarity between clusters. The lower the index value the better the 

separation between clusters [9]. 

The DBSCAN algorithm is an unsupervised learning technique that can find arbitrary shaped clusters and clusters 

with noise. It uses the number of samples in a neighborhood for a point to be considered as a core point (min_samples) 

and the maximum distance between two samples for one to be considered as in the neighborhood of the other (eps). 

The unsupervised learning algorithm OCSVM is a variation of the regular SVM. It can learn the boundary for normal 

data points where instances outside the boundary are considered to be anomalies. The isolation forest technique uses 

a repeated recursive process to randomly select a feature from the dataset and create partitions of the data based on a 

split value, until anomalies are isolated. The OCSVM and the IF models use the parameters “nu” and contamination, 

respectively. These parameters correspond to the proportion of outliers in the data set. 

3. Results and comparative analysis 

We used the Silhouette score to find the optimal min_samples and eps parameters for the DBSCAN model within 

value ranges [5-80] and [0.05-0.9] respectively. And the proportion of outliers was set to 4% for the OCSVM and IF 

 

Fig. 2. (a) Detected anomalies by DBSCAN; (b) Labeled anomalies  
 

Table 1. Performance scores for the 

anomaly detection models 
 

 DBSCAN OCSVM IF 

Precision 0.54 0.26 0.32 

Recall 0.18 0.23 0.28 

F1-score 0.27 0.24 0.30 

SS 0.82 0.69 0.68 

CH 363.65 78.61 201.82 

DB 1.10 2.71 1.49 
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algorithms as per the ratio obtained by dividing the number of instances with HCCS > 0 or UAS > 0 by the total 

number of instances in the data set. Table 1 shows how well the DBSCAN model outperformed the OCSVM and IF 

models, based on the Precision score as well as the unsupervised learning performance metrics as in [10,11]. The low 

Recall score might be explained by the fact that the dataset is highly imbalanced in terms of anomalies compared to 

normal instances. Moreover, the training time for IF, OCSVM and DBSCAN on a 12.7 GB RAM Virtual Machine 

with Nvidia’s T4 GPUs was 0.37 s, 0.02 s and 0.05 s, respectively, with OCSVM slightly faster than DBSCAN.  

Fig. 2 a) shows the clusters created by the DBSCAN algorithm. The yellow cluster represents normal instances 

while the dark purple points with triangles are the anomalies detected by the model. Fig. 2 b) displays a 3D scatter of 

the normal data in yellow with the labeled anomalies in dark purple.  

Fig. 3 presents a 60-day period where the system was unavailable for more than 1 hour (December 19th, 20th 2020 

and January 16th 2021), with the detected anomalies displayed for the different features used. The orange vertical lines 

represent the HCCS within [1, 60] s (transient loss of signal (LOS)) and the red vertical lines are days when UAS > 

3600 s (imminent loss of signal (ILOS)) as in [4]. We can see that the DBSCAN model detected 14 anomaly points 

including the 3 ILOS events for the period, but did not detect 4 LOS events (Dec 15th, 21st, 22nd 2020 and January 27th 

2021). These undetected cases may be related to alarms raised for events not linked to the PM metrics considered in 

this study. On the other hand, 9 days during which anomalies were detected by the DBSCAN model don’t have any 

alarms recorded. On December 12th, 14th 2020 for example, there were two occurrences of Q-Factor degradation, with 

very low (-45 dBm) OPR values (indicated by A and B), while the DGD remained stable for both days. This shows 

that the model can find combinations of PMs abnormal, while PMs might not all be anomalies when taken one by one.

4. Conclusion  

We propose an unsupervised ML approach for anomaly detection. Our study demonstrates the benefits of unsupervised 

learning’s ability to process unlabeled data and create clusters, thus allowing anomaly detection in multivariate time 

series without time consuming hand-labeling task on the data. In future work, we will develop a strategy allowing to 

capture gradual degradations in lightpath QoT considering multiple parameters simultaneously. 
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Fig. 3. Anomalies detected on the 3 PM metrics (Q-Factor, OPR and DGD) by DBSCAN  
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