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Abstract: We propose a decentralized graph learning framework for scaling cognitive
fault management in optical networks. Results show the proposed design achieves > 96%
fault identification and localization accuracy. © 2024 The Author(s)

1. Introduction

Effective fault management for optical networks is crucial for securing the correct delivery of tens of thousands
of Internet services. Traditional approaches typically rely on threshold-based fault detection and manual trou-
bleshooting, which can result in prolonged fault management cycles and considerable traffic losses. Recently,
machine learning (ML) has demonstrated compelling prospects in automating and intelligentizing optical network
fault management, including soft failure detection [1], identification [2], and localization [3]. However, most of
the existing ML solutions were designed to be executed in a centralized control plane with global data accessabil-
ity. This entails powerful telemetry services that constantly stream local optical performance monitoring (OPM)
data to network controllers, adding nonnegligible control plane overheads and survivability concerns. Meanwhile,
global ML models often scale with the sizes of topologies or datasets [4], which restricts their applicability to
only small-scale networks. For instance, a neural network performing fault location prediction has an output layer
whose number of neurons is equal to the total number of optical elements throughout the network. Consequently,
frequent model retraining is also necessary upon network upgrades. In this context, distributed intelligence can
be seen as a promising solution for meeting the aforementioned challenges [5, 6]. Nevertheless, few studies have
reported ML-based distributed fault management designs for optical networks.

In this paper, we present a decentralized graph learning design for scaling cognitive optical network fault man-
agement. The proposed design makes use of decentralized fault management (DFM) agents that perform local
fault detection and root cause identification. The DFM agents learn cooperatively through repeated message pass-
ing and feature aggregation, which allows them to propagate state data topologically and hereby learn the complex
patterns of fault propagation. Performance evaluations with data collected from a six-node topology show high
fault identification and localization accuracy achieved by the proposed design.

2. Principle

Fig. 1(a) shows the schematic of decentralized fault management, where each optical node is equipped with OPM
functions and an AI/ML-empowered DFM agent that performs local decision making on fault detection, identi-
fication and localization tasks. Because faults can propagate over networks, utilizing purely local OPM data is
often inadequate for identifying the root cause of a fault. For instance, a malfunctioning amplifier in the central
node can trigger concurrent anomaly indicators (e.g., deviations of signal quality-of-transmission) at downstream
nodes. Rather than all reporting OPM data to the network manager to resort to global data aggregation and in-
ferences, adjacent DFM agents communicate to exchange necessary information (OPM data, gradients, etc.) for
pursuing collaborative learning. Each agent thus can employ an identical ML model whose complexity, unlike that
of a centralized solution, does not scale with the size of the network. Consequently, the DFM framework prevails
its centralized counterparts by achieving high scalability and cost-effectiveness.

Faults propagate with complex graphical patterns and affect the OPM data from different nodes with varying
degrees as we route different sets of lightpaths over a network. Learning the correlation between OPM data while
incorporating the topological information is essential for capturing such patterns. We take the advantage of graph
learning in extracting topological correlations and propose to realize DFM with decentralized operations of graph
learning (DeGL), in particular, graph convolutional network (GCN) [7]. Fig. 1(b) illustrates the principle of DeGL
over a three-node linear topology. (1) Initialization: the state of each DFM agent is initialized to contain local
OPM parameters such as the power and noise level of each channel. (2) Message passing: each agent advertises
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Fig. 1: (a) Schematic of decentralized fault management and (b) illustration of decentralized graph learning over a three-node
linear topology. DFM: decentralized fault management. OPM: optical performance monitoring.

its state to the neighboring agents, for instance, Node B receives hA
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where G is the adjacent matrix of the topology, I is the identity matrix and D is a diagonal matrix. The rationale
behind Eq. 1 is to weight states based on node degrees to avoid gradient vanishing or exploding. Afterward, the
features of all the agents have the same dimension. (4) Feature update: each agent makes use of a neural network
fθ f (·) to generate an updated state from the aggregated features, where θ f is the set of trainable weights. Steps
(1)-(4) are repeated for multiple rounds (e.g., k), allowing for each node’s state being disseminated and exploited
throughout the network. This way, the patterns of fault propagation can potentially be learned. (5) Multi-class
classification: finally, each agent predicts with a multi-class classification layer rθr(·) whether a local fault presents
and if so, the root cause of the fault (e.g., EDFA malfunctioning). (6) Training: the agents (more specifically, θ f
and θr) can be trained cooperatively by a gradient descend method that minimizes the cross-entropy function.

3. Performance Evaluation

We evaluated the performance of the proposed decentralized fault management design with simulation data col-
lected from a six-node topology shown by Fig. 2(a). Each fiber link is of 50 kilometers and amplified by a EDFA.
We set up 12 lightpaths in parallel and Fig. 1(b) summarizes the configuration of the lightpaths. Each transmitter
operated at 56 Gbps and one of the seven wavelength channels ranging from 193.1 to 193.7 THz. All the lightpaths
adopted the 16-QAM modulation. We emulated three types of faults by manipulating the optical fiber attenuation,
amplifier noise figures and insertion losses of ROADM nodes. The ranges of these parameters and the choices of
fault threshold are presented in Fig. 1(c).

We considered the case of single faults, i.e., only a single fault was introduced to one of the six nodes at a
certain point. In total, 1,900 samples were collected, including 100 samples for each fault type in each node and
100 normal ones. Note that, for each node, only 300 samples out of the entire set belong to the faulty category.
The state of each node is composed by the power, noise levels and OSNR of the seven channels. With DeGL,
each agent predicts whether a sample is normal or corresponds to one of the three types of faults. We compared
DeGL with a multi-layer perception (MLP) model of two hidden layers (95 and 57 neurons, respectively). The
MLP model can be treated as a centralized solution that takes the states of all the nodes as input and performs a
19-class (one normal class plus three types of faults for each node) classification task. To explore the impact of
message passing on the performance of DeGL, we configured DeGL with the number of message passing layers
ranging from one to three. We trained the DeGL models using the Adam algorithm with a learning rate of 0.001
and a batch size of 30. To avoid over-fitting, we set a heuristic patience threshold of 40, which refers to an early-
stopping method that terminates training when the validation loss remains stable for 40 epochs. For MLP, we set
the learning rate and batch size to 0.007 and 190, respectively. The data set was divided into the training, validation
and testing sets with a ratio of 3 : 1 : 1.

Fig. 2(d) shows the results of fault detection accuracy from different models. We can observe DeGL with
two message passing layers performs the best among the three configurations. We presume that this is because
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Fig. 2: (a) Six-node simulation testbed; (b) lightpath configuration; (c) configuration of optical parameters; (d) results of fault
detection accuracy; (e) confusion matrix of the two-layer DeGL; and (f) results of fault localization accuracy.

increasing the number of layers from one to two helps the agents propagate their state across the network and thus
facilitates learning the patterns of fault propagation, whereas further increasing the number of layers makes all
the agents possess highly overlapping receptive fields because of the relatively small scale of the network under
evaluation. On average, the two-layer DeGL achieves a prediction error of 0.66%, comparable to that from MLP,
which has a higher false alarm rate. Fig. 2(e) shows the confusion matrix for the two-layer DeGL, where the
vertical and horizontal axes represent the ground truth and predictions, respectively. It can be seen that DeGL
achieves approximate 100% detection accuracy for fault types 1 and 3 and performs slightly worse for fault type
2, which corresponds to the introducing of abnormal amplifier noise figures. Fig. 2(f) shows the results of fault
localization accuracy. Again, the two-layer DeGL outperforms the single-layer and three-layer configurations with
an accuracy of 96.71%, while MLP achieves the best performance among all. Note that, MLP could suffer from
scalability issues as its output layer scales up quickly with the size of the network and the number of fault types.

4. Conclusion

This paper presented a scalable optical network fault management framework leveraging decentralized graph
learning. Performance evaluations verified the effectiveness of the proposed design.
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