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Abstract: We propose a hidden feature extraction learning method for RNN equalization to 
improve training efficiency without increasing computational burden. Superior BER is 
demonstrated in 288 Gb/s 100 m VCSEL-MMF interconnect compared with black-box training 
strategy. © 2024 The Author(s) 

 
1. Introduction 

In recent years, the development of bandwidth-hungry applications has brought an exponential growth in data center 
traffic. In order to counteract the resulting bandwidth limitations and nonlinear distortions that affect VCSEL-based 
intensity modulation and direct detection (IM/DD) interconnects at high data rates, advanced digital signal 
processing (DSP) techniques have been extensively investigated [1]. Particularly, neural networks (NNs) provide an 
attractive alternative to traditional model-based approaches to overcome complex and challenging characteristic 
modeling [2,3]. Thanks to the powerful capability in dealing with high complexity and high dimensionality 
problems, NNs are able to achieve excellent performance with complex structures [4]. 

Meanwhile, deep learning (DL) techniques, which can approximate any nonlinear function, enable the design of 
communication systems by carrying out the optimization in a single end-to-end process including the transceivers as 
well as communication channels [5]. In contrast to traditional block-based signal processing methods, it achieves 
global optimum by directly fitting from raw data to the final target. Actually, a deep neural network with multiple 
layers autonomously acquires a robust representation of the input message through numerous iterations. However, 
the training process belongs to an entire black-box strategy. In order to ensure the accuracy and effectiveness of 
training results, a large amount of data input is highly required [6]. 

In this paper, an enhanced deep recurrent neural network (RNN) equalization method based on hidden feature 
extraction (HFE) learning is proposed, which owns more effective training talent. The validity and reliability of the 
proposed method are experimentally demonstrated in several VCSEL-based high-speed interconnect scenarios up to 
288 Gb/s over 100 m link. Moreover, superior bit error ratio (BER) performance is achieved compared with the 
traditional black-box training strategy. 

2.  Enhanced RNN Equalizer via Hidden Feature Extraction Learning 

As a consequence of nonlinear distortions induced by transceivers and the fiber, the short-reach optical interconnect 
behaves as a non-Gaussian channel. Moreover, arising from the interaction of inter-symbol interference (ISI) and 
square-law detection, the channel has nonlinear memory effects [7]. For neural networks with linearly-connected 
neurons, the nonlinearity is predominantly fitted by the activation function with an arduous burden in training. 

Fig. 1 shows the complete flowchart of the proposed enhanced HFE learning method. We introduce the hidden  

 
Fig. 1. Flowchart of the proposed HFE learning method, including the feature (pre-training) and sequence learning process. 
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feature extraction as pre-training before the sequence training. It should be noted that hidden features refer to 
characteristics that cannot be observed directly from the raw data but are critical for improving NN-based signal 
detection. It can be extracted through feature learning process as follows. Based on the original received signal 
sequence {x(t)}, quadratic space transformation characterizes the nonlinear memory effects by considering the 
repeatable product of a certain length of received signal, which is expressed as 

 (1) 

where –L ≤ r1 ≤ r2 ≤ L and L is the number of adjacent symbols required for transformation. The number of 
characterized features, denoted as Nf, is equal to . The neural network can learn directly with the 
feature component  as input, but its size will be further expanded compared to the raw data. 
Consequently, principal component analysis is introduced for further compression. 

Define the pre-compression feature matrix A: 
                                               (2) 

Nt denotes the length of training data. Due to the fact that ATA is a real symmetric matrix and has an equal rank with 
A, there must exist a Nf -order orthogonal matrix  that satisfies 

                                                  (3) 

where m is the rank of A and λg (g=1,2,...m) is the non-zero eigenvalue of A.  is the diagonal matrix composed of 
singular values as  . As it is feasible to keep λ1 ≥ λ2 ≥ ... ≥ λm, the features can be characterized by the former 
Nrd-dimensional sub-blocks (1 ≤ Nrd ≤ Nf ). The hidden features after dimensionality reduction can be derived as  

                                                                      (4) 
The sequence learning is performed based on RNN. Through connection feedback and parameter sharing, it 

allows the current output to influence the subsequent input in the same node, exhibiting time-dependent dynamic 
tracking capability. The depth fitting in the input/output direction is also achieved by increasing the number of 
hidden layers. The forward propagation process of RNN with l hidden layers can be expressed as 

                         (5) 

where σ(.) is the activation function. Ws,j, Wr,j, bj are the weights of neurons in the j-th layer and  is the 
corresponding hidden layer state. All parameters are learned by the back propagation through time algorithm. 

After the training stage described above, the proposed RNN equalizer works online. We propose a new HFE 
learning method and after the training, RNN also works in the classical way. For the PAM-K signal, the predicted 
probability of each modulation amplitude   can be obtained by softmax function. Based on the 
maximum posterior probability rule, the signal detection results after equalization are derived as 

                                                               (6) 

Generally, Nrd =1 is sufficient to meet the performance requirements. Compared to the traditional training method 
for RNN, the input dimension remains the same after HFE, which means we try to improve the training efficiency of 
neural networks without increasing computational burden of training process. 

3.  Experimental Results 
The experimental setup and digital signal processing (DSP) diagram are depicted in Fig. 2(a). At the transmitter side, 
PAM-8 symbols are generated by an arbitrary waveform generator (AWG) with 120 GSa/s sampling rate. We 
employ 850 nm VCSEL from Berxel as light source and obtain a 3 dB bandwidth of 23 GHz with an optimized 8 
mA bias current. The operating bias is set with a 65 GHz bias-T and the optical signal is coupled into the 100 m 
OM-4 MMF via a lensed fiber. At the receiver side, the optical signal is directly detected by a photoreceiver with 22 
GHz bandwidth. To reduce the interference of oscilloscope noise floor, the received signal is amplified by a 22 dB 
electrical amplifier (EA) before being sampled. The real-time digital storage oscilloscope (DSO) captures the signal 
at 160 GSa/s rate. The frequency response of the system is measured via the PNA-network analyzer (Keysight 
N5247A) and the result is depicted in Fig. 2(b). 

While evaluating the performance of RNN trained by the proposed HFE method, RNN trained in the traditional 
way is adopted as the benchmark. The number of hidden layers l is kept to 3, and rectified linear unit (ReLU) is used  
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Fig. 2. (a). Experimental configuration of a PAM-8 signal transmission system utilizing 850 nm VCSEL. (b) Measured frequency 
response of the 100 m VCSEL-MMF link. (c) Measured BER performance of RNN trained in the traditional way and RNN trained by 
the proposed HFE method at different transmission rates. 

as the activation function σ(.) to avoid the vanishing gradients in training. A dataset containing 510,0000 PAM-8 
symbols are obtained following [8]. We have extracted 450,0000 of them to construct the training set, while the rest 
are put into the test set. 

Fig. 2(c) shows the BER performance at different transmission rates. Compared to the traditional RNN, RNN 
trained by HFE obtains a growing BER gain as the data rates increase. This is attributed to the pre-training process 
that extracts hidden features and guides the deep RNN in channel learning, where L and Nrd are set to 2 and 1 
respectively for optimal performance. The experimental results present that BER of 288 Gb/s PAM-8 signal 
transmission based on HFE-RNN over 100 m OM4 MMF is much lower than 20% soft-decision forward error 
correction (FEC) threshold.  

Fig. 3 compares the performance of the two training methods for RNN. As epochs gradually increase, the loss 
shows a trend of rapid reduction followed by a slow decrease until convergence. It should be noted that slight 
fluctuation of the loss during the iteration process is normal, which does not affect the achievement of convergence. 
This indicates that the training process effectively learns the channel characteristics of the high-capacity VCSEL-
MMF system. Compared with the traditional method, HFE has lower loss performance as well as higher efficiency 
in the same number of epochs. 

 
Fig. 3. Performance comparison of different training methods for RNN. 

4.  Conclusion 
An enhanced RNN method based on HFE learning is proposed to realize effective signal detection. Compared with 
the traditional black-box structure of end-to-end learning, HFE obtains enhanced feature input through quadratic 
space transformation, principal component analysis and dimensionality reduction. It is capable of improving the 
learning efficiency of NNs without increasing the computational burden. Using the new method, single-lane 288 
Gb/s signal transmission over 100 m MMF is implemented with BER well below the 20% SD-FEC threshold. 
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