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Abstract: We propose an orchestration framework to optimize network and computing
resources and minimize degradation from quantum and classical communication in distrib-
uted quantum computing interconnect networks. © 2023 The Author(s)

1. Introduction
Quantum computing is an emerging technology that holds promise for solving complex problems much faster
than traditional computers. However, current quantum processors have limitations in computational power [1].
Distributed quantum computing (DQC) has been proposed as a solution to address these scalability issues [1, 2].
DQC involves partitioning and executing quantum algorithms across multiple interconnected quantum processing
units (QPUs) to leverage their combined computing power. A key requirement for DQC is performing quantum
operations between qubits on separate QPUs (termed a remote gate), which can be accomplished using entangled
qubit pairs. For instance, Fig. 1a illustrates the circuit diagram for implementing a controlled-NOT (CNOT) gate
between two computing qubits, namely qc and qt , positioned remotely [3]. This implies that both quantum and
classical communication are necessary in a DQC interconnect network.

Operating as a distributed system, DQC requires efficient orchestration of network components through tasks
like scheduling, compiling, partitioning of a quantum circuit (QC) to two or more parts (termed circuit parti-
tioning), and allocation of network and computing resources (termed resource allocation) to different tasks. This
work focuses specifically on circuit partitioning and resource allocation. Existing literature has explored aspects
of these tasks. For instance, in [4, 5] circuit partitioning approaches based on graph partitioning methods have
been proposed. However, these works mainly concentrate on optimizing the partitioning of individual quantum
circuits into a fixed number of segments. In [6], a straightforward resource allocation method has been proposed
that assumes identical QPUs. This work takes the next step by considering the joint optimization of resource
allocation and circuit partitioning for short-range DQC interconnect networks. The optimization problem consid-
ers two main goals: 1) minimizing errors from quantum and classical communication delays, and 2) optimizing
quantum processor utilisation. The first goal relates to enhancing computation accuracy by accounting for qubit
decoherence during delays for entanglement generation and classical measurement information transmission. The
second goal focuses on efficiently utilizing computing resources. To simultaneously address these two objectives,
a multi-objective optimization algorithm based on mixed-integer linear programming (MILP) has been proposed.
The proposed solution can significantly improve the DQC utilisation.
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Fig. 1: (a) Circuit diagram of remote CNOT gate. (b) Quantum network model (physical layer).

2. Network model
The quantum network model depicted in Fig. 1b is considered in this work. At the core of the network lies a
reconfigurable optical switch which dynamically connects different network components such as QPUs and Bell
state measurement (BSM) modules. This dynamic network configuration allows adapting the network topology to
match the specific demands of quantum algorithms. The BSM modules are utilized to generate heralded entangle-
ment within the network. In the following, the parameters associated with this network model are described.

We assume a network with J QPUs, where P quantum circuits are to be assigned to them. The sets of QPUs and
QCs are denoted by {QPU1,QPU2, . . . ,QPUJ} and {QC1,QC2, . . . ,QCP} respectively. The number of computing
qubits in QPUs is represented by the vector N = [n1, . . . ,nJ ], while the average/median of the memory decoherence
time of the QPUs’ qubits is denoted by T = [t1, . . . , tJ ]. As for the QCs, the circuit width and the number of
partitions for QCs are represented by the vectors W = [w1, . . . ,wP] and K = [k1, . . . ,kP], respectively.
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3. Resource allocation and circuit partitioning problem
In this section, we formulate the problem of jointly optimizing resource allocation and circuit partitioning, con-
sidering the two objectives mentioned in Sec. 1.

Let us assume a specific circuit partitioning and resource allocation instance, A , resulting in kp partitions and
n(rg)p remote gates for QCp, where p ranges from 1 to P. Additionally, each of these circuit partitions is assigned to
a QPU. We define the matrix XP×J with elements xp j, where xp j is the number of qubits from QCp assigned to the
QPU j. In the following, we present the mathematical formulation of the objectives for our optimization problem.

First, we will focus on the first objective. For a qubit stored for time τ , the decoherence process can be modelled
using a depolarizing noise model, as follows [7]:

ρ(t0 + τ) = r(τ, tdec)ρ(t0)+
1− r(τ, tdec)

3
(σzρ(t0)σz +σxρ(t0)σx +σyρ(t0)σy), (1)

where tdec denotes the memory decoherence time of the quantum memory, and r(τ, tdec) = 0.5(1+e−τ/tdec). In the
above equation, ρ(t0) and ρ(t0 + τ) are the state of the qubit at time t0 and t0 + τ , respectively. The parameters
σx, σy, and σz denote the Pauli matrices. It can be inferred from Eq. (1) that the probability that the state of the
qubit remains intact is equal to r(τ, tdec). Now, we consider the quantum circuit QCp with wp qubits partitioned
to kp parts and assigned to the QPUs according to A . For a single remote gate event, the probability that the
latencies from entanglement generation and classical communication, denoted by Teg and Tmr, does not alter the
state of a qubit from QCp allocated to QPU j is given by a j = r(Teg,Tj)× (r(Tmr,Tj))

2, where the power 2 is
due to two rounds of classical data transmission, according to Fig. 1a. Taking all of the qubits of QCp and the
number of remote gates into account, the probability of no error occurring due to these delays can be written

as Pe = 1−∏
J
j=1 a

xp jn
(rg)
p

j . We define the cost corresponding to A for QCp to be C(A , p) = Pe. Simplifying this
cost function by utilising the logarithmic function, and taking all QCs into account, the first objective is defined
as obj1 = ∑

P
p=1 n(rg)

p ∑
J
j=1 b jxp j, where b j = − log2 a j. Next, we define the second objective. To formulate this

objective function, a vector, v, with binary elements and length J is defined, where the jth element, v j, is equal to
one if ∑

P
p=1 xp j > 0. The number of used QPUs is then given by obj2 = ∑

J
j=1 v j.

It is worth highlighting that objective 1 and objective 2 are tightly related, as both aims align with reducing the
number of remote gates. On one hand, utilizing fewer QPUs will unavoidably result in fewer remote gates. On
the other hand, as we can see from the mathematical definition of objective 1, a smaller number of remote gates
substantially reduces the probability of error. It is also worth noting that executing remote gates requires quantum
and classical communication resources. As such, this optimization enhances network resource utilization as well.

The parameter n(rg)
p is complex, as it depends on the allocation vector [xp1,xp2, . . . ,xPJ ] and the properties of

QCp. This makes the optimization problem nonlinear and intractable, exceeding polynomial time solvability. To
handle the complexity, the next section proposes a method to find a good approximate solution.
4. Proposed multi-objective optimisation method
To simplify the optimization problem, a new parameter correlated with n(rg)

p is introduced. Specifically, a graph is
constructed for QCp, where vertices represent qubits and edges are two-qubit gates. The parameter gp is defined
as (mincut+maxcut)/2, where mincut (maxcut) gives the minimum (maximum) number of crossing edges when
partitioning the graph vertices to two parts. Thus, gp characterizes the connectivity of the QCp. Our method
substitutes n(rg)

p with gp(kp − 1). This incorporates both the number of partitions and the nature of the quantum
circuit into the formulation. With further simplifications, the multi-objective minimization problem becomes:

min{
P

∑
p=1

J

∑
j=1

gpb jxp j,
P

∑
p=1

kp,
J

∑
j=1

v j}, (2)

which can be solved using MILP model and ε-constraint method. Here again, to incorporate the number of parti-
tions in our problem formulation, the matrix EP×J is defined with binary elements ep j, where ep j is equal to one if
xp j > 0. The total number of circuit partitions, kp, is then achieved by ∑

P
p=1 ∑

J
j=1 ep j. The MILP-based formulation

for this optimization problem is presented in Table I. The parameters Z and B in Table I represent the constraints
on the number of partitions and the number of QPUs, respectively. Additionally, M is a positive constant that is
larger than the elements of N.

The proposed algorithm has two key phases. First, the MILP formulation in Table I is used to derive a solu-
tion for matrix X , which allocates qubits from multiple QCs to individual QPUs. Next, each quantum circuit is
independently partitioned to meticulously minimize the number of remote gates.

5. Evaluation and simulation results
This section evaluates the proposed resource allocation and partitioning algorithm through simulations on a 6-QPU
quantum network. The QPU capacities n j and decoherence times t j are randomly chosen based on superconducting
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quantum processor properties, with n j ∈ {5, . . . ,27} and t j ∈ {35, . . . ,400}. We use benchmark quantum circuits
from the Munich toolkit [8] to establish the set of QCs. This set encompasses four distinct QC types: Quantum
Fourier Transform (QFT), Deutsch-Jozsa (DJ), Variational Quantum Eigensolver (VQE), and GHZ state. In our
evaluation, two primary scenarios are considered: 1) Six total QCs - two QFT, two DJ, one VQE, one GHZ 2)
Four QCs - one of each type. The width of each QC, w, is randomly chosen from {8, . . . ,15}. The parameters Teg
and Tmr are assumed to be 10 µs and 0.4 µs respectively.

Table 1: MILP-based formulation

min
P

∑
p=1

J

∑
j=1

gpb jxp j

s.t.
J

∑
j=1

xp j = wp for p = 1,2, . . . ,P

P

∑
p=1

xp j ≤ n j for j = 1,2, . . . ,J

0 ≤ xp j ≤ Mep j , ep j ≤ xp j for, p = 1,2, . . . ,P j = 1,2, . . . ,J

v j ≤
P

∑
p=1

xp j ,
P

∑
p=1

xp j ≤ Mv j for j = 1,2, . . . ,J

P

∑
p=1

J

∑
j=1

ep j ≤ Z,
J

∑
j=1

v j ≤ B

The proposed algorithm is compared to a benchmark algo-
rithm that assigns each QC to the QPU with the most available
qubits. This approach fills QPUs round-by-round. For each sce-
nario, random selection of the QPUs and the QCs is repeated
for 1000 times. In each iteration, the QCs are partitioned and
allocated to the QPUs using both the proposed and bench-
mark algorithms. To solve the MILP problem in the proposed
method, Python MIP is used.

Figure 2 compares the performance of the proposed algo-
rithm to the benchmark algorithm under two scenarios. The
metrics shown are the average total number of remote gates
and the average number of used QPUs. As highlighted in Sec.
3, the number of remote gates is directly related to both net-
work resources and the errors arising from quantum and clas-
sical links. Therefore, this metric is an appropriate figure of merit for evaluating the performance of our proposed
algorithm. The proposed algorithm is evaluated with three different constraints on the maximum number of QPUs
(B = 4, 5, and 6). The results demonstrate that the proposed algorithm reduces the average total number of remote
gates substantially compared to the benchmark in both scenarios. Additionally, the proposed algorithm utilizes
fewer QPUs on average in all cases. By tuning the constraint on QPU usage, the proposed approach achieves
significant improvements in both remote gate count and QPU utilization over the benchmark.
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Fig. 2: Simulation results for the proposed and benchmark algorithms and different scenarios. (a) Average total
number of remote gates. (b) Average number of used QPUs.
6. Conclusion
This work addressed resource allocation and circuit partitioning for DQC interconnect networks. The proposed
MILP-based approach aims to optimize two key metrics: 1) errors from quantum and classical communication and
2) QPU usage. Simulations demonstrate the method’s ability to significantly enhance QPU utilization and network
resources compared to benchmarks, as well as reducing the errors arising from quantum and classical links. The
proposed algorithm provides an important advance towards realizing efficient DQC networks.
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