
Neural Network Model of a Second Stage L-band
Amplifier using Experimental Training Sets

Hamed Rabbani, Kaboko Jean-Jacques Monga, Sophie LaRochelle and
Leslie A. Rusch

ECE Department, Center for Optics, Photonics and Lasers, Université Laval, Québec, Canada
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Abstract: Using experimental measurements with high-power input signals, we train
a neural network model of the second stage of an L-band amplifier. With the model, we
jointly optimize amplifier gain and noise figure (alternately gain flatness). © 2023 The
Author(s)

1. Introduction

Erbium doped fiber amplifiers (EDFAs) play a critical role in compensating signal loss and enhancing the effi-
ciency of optical links. A better amplifier design can reduce network power margins and improve system perfor-
mance. Physics-based EDFA models work well for the C-band, however, they are less accurate in the extended
L-band. In this spectral region, extracting precise Giles parameters is difficult due to the low emission cross-section
and the presence of excited state absorption [1]. Previously we addressed modeling of a single stage L-band am-
plifier with an innovative application of neural network (NN). We exploited experimental data sets to predict the
behavior of a single-stage EDFA [2]. The very accurate NN-based predictions found with fast computation time
are excellent tools for amplifier design and optimization. [2, 3].

Compared to a single stage amplifier, a two-stage amplifier can deliver significantly higher gain while preserv-
ing a relatively low noise figure (NF). Multi-stage amplifiers are particularly challenging to optimize, whether
targeting spectral gain, NF, and/or power efficiency. While the first amplifier stage may see a flat signal profile,
the second stage will see both higher powers and less uniform power across wavelength. We extend our previous
modeling of a single (or first) stage L-band amplifier. We modify our experimental setup to enrich the diversity of
the training set required for a second stage. We evaluate the accuracy of model predictions. Using the NN model,
we present an example of an amplifier design with two distinct performance criteria.

2. Experimental Approach and Neural Network Modeling

2.1. Collection of Experimental Training Set

Figure 1 shows the two-stage experimental setup we use to collect training sets. The first stage provides the
second stage with sufficient signal power to create a meaningful training set. Both stages use the same erbium
doped fiber (EDF) that was designed and produced in our lab to cover the extended L-band [4].

The input to Stage 1 is an L-band laser source with cumulative 0.5 dBm over seven wavelengths ranging from
1575 to 1626 nm (i.e., -7.95 dBm per wavelength). The Stage 1 is held constant throughout the data collection;
the output spectra is given as an inset, with signal power per wavelength varying from 5.29 dBm to 15.23 dBm.

Fig. 1: Experimental setup for capturing the training and test sets (OSA: optical spectrum analyzer). The wave-
shaper box has four examples from the random loss profiles we applied; insets are for fixed output spectrum of
Stage 1, and a histogram of total power input to Stage 2 when using the random loss profiles.
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The first stage is followed by a programmable filter covering 1567 to 1640 nm, i.e., a waveshaper (Finisar
1000A/XL, 6 dB insertion loss). For the 0.16 nm band centered on each channel, we create random attenuation
levels. We take independent random variables uniformly distributed between 0 and 25 dB for the attenuation at
each wavelength. In this way we produce a variety of feasible input signal power profiles, Ps. Note that the seven
random attenuation levels are smoothed using spline interpolation, producing waveshaper profiles such as those
shown in the waveshaper box in Fig. 1. The second stage sees an input of seven signals as well as L-band amplified
spontaneous emission (ASE).

Stage 2 in Fig. 1 has an EDF with length L. We pump bidirectionally with two 1480 nm laser diodes, at powers
Pf and Pb. We used 1480 nm pumps for increased inversion and amplification efficiency while keeping NF low. We
sweep the input vector [Ps Pf Pb L] to gather the training set. We can sweep [Ps Pf Pb] with automated control of
the waveshaper and pumps. However, the preparation of different fiber lengths [L] can only be done by manually
cutting the fiber. We collect data at four fiber lengths (30, 40, 50, and 60 m). An optical spectrum analyzer measures
output spectra of Stage 2, from which we calculate the gain and NF at each wavelength. The [Pf Pb L] ranges are
noted in Fig. 1. To complement the training set, we gather an additional test set, by randomly selecting vectors
[Ps Pf Pb] within training set measurement ranges. We use fiber lengths of 35, 45, and 55 m for the test set.

2.2. NN Structure and Prediction Accuracy

We collected a training set of 15000 vectors [Ps Pf Pb L] over a one week measurement campaign. We train a feed
forward neural network (FFNN) with a structure given in Fig. 2a; it is similar to the one in [2]. We have four hidden
layers with an equal number of neurons per layer, and scaled exponential linear unit (SELU) activation functions.
As shown in Fig. 2a, the current model has a vector of signal power input, whereas in the previous model the signal
input was only a scalar of total signal power (i.e., all wavelengths had equal power). Previously we used separate
neural networks for predicting gain and NF. Now we use a single FFNN to capitalize on correlations between gain
and NF. The error in gain and NF predictions are equally weighted during training.

The test set had Nt =1500 vectors. We define the absolute error in dB between predicted gain (or NF), Ŷ (λ ),
and true gain (or NF), Y (λ ), per

Error (dB), all wavelengths =
{∣∣Ŷj(λi)−Yj(λi)

∣∣ , i = 1,2, . . . ,7
}Nt

j=1 (1)

The histograms in Fig. 2b,c of the absolute error include annotations for the mean, µ , and the standard deviation,
σ . For gain in Fig. 2b, 92% of errors are below 0.5 dB. For noise figure in Fig. 2c, the histogram is even more
peaked near zero and nearly every error is below 0.5 dB. We expect greater error in gain than noise figure, as
gain is more sensitive to variations in fiber length and inversion level. This low prediction error comes along
with computations that are one to two orders of magnitude faster than the Runge-Kutta calculations required in
physics-based simulation models.

(a) (b) (c)

Fig. 2: a) The FFNN structure, and histograms of the absolute error in dB for b) gain, and c) NF prediction.

3. Jointly Optimizing for Large Gain and Small Ripple (or Noise Figure)

Using our NN model, we can exploit the accuracy and computational efficiency to analyze performance trade-offs
across a large parameter space. The model can attack complex designs or interdependent performance metrics. In
the following, we examine a simple two-stage amplifier design problem. In this example, we fix the amplifiers and
optimize the mid-stage band pass filter, while attacking two different performance targets. That is, we assume that
both stages in the amplifier have fixed parameters [Pf Pb L]. In the first stage, the input signal powers are flat and
fixed and we use the values specified in Fig. 1. In the second stage Pf = Pb = 800 mW and L = 60 m, while Ps
varies according to the setting of the mid-stage band pass filter, e.g., a waveshaper.
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Fig. 3: a) Gain (solid lines) and NF (dashed lines) vs. wavelength for two optimizations, and b) corresponding
mid-stage band pass filters for the two optimizations.

We utilize the trained NN model and particle swarm optimization (PSO) technique to perform joint optimization.
One optimization is maximizing the gain on the worst-case wavelength, i.e., we maximize the minimum gain. The
joint optimization can be while minimizing noise figure or gain ripple. We define (Gmax −Gmin)/Gmin over the
spectral range from 1575 to 1626 nm to be the gain ripple; the gain is the total gain over the two stages. With PSO
we investigate the parameter space through the evolution of a set of solutions. Compared to exhaustive search, we
can explore a more extensive parameter space by exploiting PSO computational efficiency. Each PSO particle is a
mid-stage band pass filter profile of [Wλ1 Wλ2 ...Wλ7 ]. Each PSO particle is initialized randomly within [0, 25] dB,
and then particles adjust their velocity based on their individual best objective function value as well as the swarm
global best result. We set cognitive coefficient c1 = 0.5, social coefficient c2 = 0.5, and inertia coefficient w = 0.5.
The optimization process terminates once the difference between the last two iterations falls below 10−8.

Figure 3a plots gain in solid lines (left y-axis) and NF in dashed lines (right y-axis). The circle markers are for
the case when NF is optimized, while the cross markers are for the solution that minimizes gain ripple. Clearly
the best solution is that minimizing NF: the gain is higher and the noise figure lower. The NF in this case is
fairly flat, ranging from 7-9 dB. When minimizing gain ripple, the gain is very flat with a ripple of only 0.017 dB
around 20.4 dB. However, we see that the NF is high and has a large excursion, reaching 15 dB for the shortest
wavelength. Since the minimal gains are very similar (∼20 dB) for the two optimizations a final stage filter could
flatten all gain to 19.7 dB and keep NF below 9 dB.

Figure 3b shows the mid-stage band pass filter found for each optimization. We see that reducing the ripple
by applying greater losses in the middle stage comes at a substantial cost in NF. We returned to laboratory and
implemented both optimized mid-stage filters with our waveshaper. The experimental validation is included in
Fig. 3a as dotted lines, and matches well to our prediction. This simple example shows the potential of NN for
amplifier design. More complex scenarios involving a larger set of varying parameters, such as pump powers and
fiber length, as well as more complex objective functions could be supported by this fast computational model
combined with efficient optimization techniques.

4. Conclusion

We trained a feed forward neural network (FFNN) with experimentally collected training set. We used an ex-
perimental test set at lengths not covered in training to assess the quality of NN predictions of gain and noise
figure (NF) for the second stage of a two-stage amplifier. The predictions were accurate with mean error of 0.2 dB
for gain and 0.09 dB for NF. We used our model for joint optimization of the gain and ripple (or noise figure) via
choice of a mid-stage band pass filter using particle swarm optimization (PSO) optimization. The NN model has
lower computational complexity than physic-based models, and high accuracy.
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