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1. Introduction 

Nonlinear Frequency Division Multiplexing (NFDM) is a promising theory for addressing the fiber nonlinearity-
induced capacity crunch and as an analysis framework for various nonlinear optical systems and phenomena. Using 
nonlinear Fourier transform (NFT) corresponding to the nonlinear Schrodinger equation (NLSE) that governs a signal 
propagation in a nonlinear fiber, information can be encoded into the signal’s nonlinear spectrum and each nonlinear 
spectral component undergoes linear evolution (phase rotation) during propagation in a lossless fiber without mutual 
interference, giving rise to a set of parallel communication channels ideal for the nonlinear fiber in principle [1]. 
However, the integrability of NLSE is broken as the real-world fiber is always lossy and amplified spontaneous 
emission (ASE) noise from optical amplifiers also add noise to the nonlinear spectrum, and therefore the signal cannot 
be recovered by simply back rotating the nonlinear spectrum. This is especially problematic for the discrete NFT system 
as the discrete eigenvalues are also corrupted by noise and the back rotating the phase spectra will result in large errors. 
Various signal processing techniques such as linear minimum mean square error (LMMSE) estimator [2], nonlinear 
filters and machine learning [3] are studied to reduce the noise in eigenvalues and b-coefficients but they are relatively 
complex. 

In this paper, we analytically derived and propose back rotating the received nonlinear spectrum by only half of 
the full propagation distance in practical lossy discrete eigenvalue transmission with inline amplifier noise as a simple 
and efficient algorithm to improve the SNR of discrete eigenvalue transmission systems. Simulation results show that 
the proposed algorithm achieves nearly the same performance as LMMSE but significantly reduces computational 
complexity. 

2. Principle of nonlinear spectral back-rotation 

In an ideal lossless fiber, the signal propagation is described by NLSE (in normalized form), 𝑗𝑗𝑞𝑞𝑧𝑧 + 𝑞𝑞𝑡𝑡𝑡𝑡/2 + |𝑞𝑞|2𝑞𝑞 = 0, 
where 𝑞𝑞 = 𝑞𝑞(𝑧𝑧, 𝑡𝑡) denotes the normalized complex envelope of the signal, and the subscripts denotes partial derivatives 
with respect to 𝑧𝑧 or 𝑡𝑡. The nonlinear spectrum of 𝑞𝑞(𝑧𝑧0, 𝑡𝑡), a signal at position 𝑧𝑧0, is obtained by solving the eigenvalue 
problem, and the nonlinear Fourier coefficients 𝑎𝑎(𝜆𝜆) and 𝑏𝑏(𝜆𝜆) are given by 
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The continuous and discrete spectral coefficient is defined as 𝑄𝑄𝑐𝑐(𝜆𝜆) = 𝑏𝑏(𝜆𝜆) 𝑎𝑎(𝜆𝜆)⁄  , 𝑄𝑄𝑑𝑑(𝜆𝜆𝑖𝑖) = 𝑏𝑏(𝜆𝜆𝑖𝑖) 𝑎𝑎′(𝜆𝜆𝑖𝑖)⁄  where 
𝜆𝜆𝑖𝑖  is the solutions of 𝑎𝑎(𝜆𝜆𝑖𝑖) = 0 , and 𝜆𝜆 ∈ ℝ , 𝜆𝜆𝑖𝑖 ∈ ℂ+ , while in this paper, we restrict our discussion in discrete 
eigenvalue systems. The evolution of b-coefficient, 𝑏𝑏(𝜆𝜆𝑖𝑖) with z is given by 𝑏𝑏(𝜆𝜆𝑖𝑖 , 𝑧𝑧) = 𝑏𝑏(𝜆𝜆𝑖𝑖 , 0)𝑒𝑒2𝑗𝑗𝑗𝑗𝑖𝑖

2𝑧𝑧 , where the 
eigenvalue(s) 𝜆𝜆𝑖𝑖 are keep constant during propagation. and we assume information is encoded in the amplitude and 
phase of b-coefficient. At the receiver, 𝑏𝑏(𝜆𝜆𝑖𝑖 , 0) can be simply retrieved by back rotating 𝑏𝑏(𝜆𝜆𝑖𝑖) by 𝑒𝑒−2𝑗𝑗𝑗𝑗𝑖𝑖

2𝑧𝑧 in the ideal 
case of lossless and noiseless fiber. 

The circularly symmetric complex white Gaussian ASE noise in the time-domain is generally not Gaussian in 
nonlinear spectrum domain, but the noise in discrete eigenvalues can still be approximated by a conditional Gaussian 
distribution in the small noise limit [4]. Consider a lumped amplification system and single-eigenvalue discrete NFDM 
signal with initial eigenvalue 0 + 𝑗𝑗0.5 , i.e., a 1st-order soliton in the time domain. We assume that at each EDFA 
(separated by normalized distance 𝐿𝐿), independent noise is added to 𝛼𝛼, 𝛽𝛽 and 𝑏𝑏, and 𝛼𝛼, 𝛽𝛽 and 𝑏𝑏 are free from noise 
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during the propagation in the next fiber span. Their values right after the 𝑖𝑖𝑡𝑡ℎ  EDFA are denoted by 𝑎𝑎𝑖𝑖 , 𝛽𝛽𝑖𝑖  and 𝑏𝑏𝑖𝑖 
respectively as in Fig 1. 

 
 
 

Fig.1 Schematic diagram of the transmission link. Gaussian noise is independently added to 𝜆𝜆 and 𝑏𝑏 after each EDFA. 

During propagation, the b-coefficient gradually deviates from its original value due to its own noise accumulation 
and also due to the noisy eigenvalue. Mathematically, 𝑏𝑏𝑖𝑖+1 = 𝑏𝑏𝑖𝑖𝑒𝑒−2𝑗𝑗(𝛼𝛼𝑖𝑖+𝑗𝑗𝛽𝛽𝑖𝑖)2𝐿𝐿 + 𝑛𝑛𝑖𝑖+1 , so |𝑏𝑏𝑖𝑖+1| ≈ |𝑏𝑏𝑖𝑖|𝑒𝑒4𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝐿𝐿 ≈
|𝑏𝑏𝑖𝑖|𝑒𝑒2𝛼𝛼𝑖𝑖𝐿𝐿 and ∠𝑏𝑏𝑖𝑖+1 ≈ ∠𝑏𝑏𝑖𝑖 + 2(𝛽𝛽𝑖𝑖2 − 𝛼𝛼𝑖𝑖2)𝐿𝐿 ≈ ∠𝑏𝑏𝑖𝑖 + 2𝛽𝛽𝑖𝑖2𝐿𝐿 in the small noise case, as shown in Fig. 2. We note that the 
deviations of 𝛼𝛼  and 𝛽𝛽  at each EDFA is relatively small, which makes the deviation of 𝛼𝛼  contributes much more 
significantly to the deviation of |𝑏𝑏𝑖𝑖|, while the noise in 𝛽𝛽 contribute much more to the deviations of ∠𝑏𝑏𝑖𝑖, resulting in 
the approximation above. It is more common to analyze the logarithm of the b-coefficient, so ln|𝑏𝑏𝑁𝑁+1| = ln|𝑏𝑏𝑁𝑁| +
2𝛼𝛼𝑁𝑁𝐿𝐿 = ⋯ = ln|𝑏𝑏0| + 2𝐿𝐿 ∑ 𝛼𝛼𝑖𝑖𝑁𝑁

𝑖𝑖=1  and similarly, ∠𝑏𝑏𝑁𝑁+1 = ∠𝑏𝑏0 + 2𝐿𝐿 ∑ 𝛽𝛽𝑖𝑖2𝑁𝑁
𝑖𝑖=1 . Without loss of generality, we set the 

initial b-coefficient, 𝑏𝑏0 = 1. We also assume the noise added to either 𝛼𝛼 or 𝛽𝛽 at each EDFA is identical independently 
Gaussian distributed and ignore the noise in the b-coefficient itself hereafter (while it is still drawn in Fig. 2). That is 
to say, 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 are roughly a “discrete” version of Wiener processes. More complex models can be found in [5-7], 
which argued that the noise in the discrete eigenvalues is generally not Gaussian. 

 
Fig. 2 Random evolution of 𝜆𝜆𝑖𝑖  and 𝑏𝑏𝑖𝑖  due to the ASE noise added by each EDFA, and the x-axis is normalized to 𝐿𝐿, 𝑥𝑥 = 𝑧𝑧/𝐿𝐿. 

After transmitted through a N-span system with N+1 EDFA, the signal’s noisy eigenvalue 𝛼𝛼𝑁𝑁+1 + 𝑗𝑗𝛽𝛽𝑁𝑁+1 and b-
coefficient 𝑏𝑏𝑁𝑁+1 are obtained through NFT operation, and we back rotate the noisy b-coefficient by their corresponding 
received noisy eigenvalues. This is graphically shown as the straight dash line in Fig. 2 starting from point (N, 𝑏𝑏𝑁𝑁+1) 
with a slope of 2𝐿𝐿𝛼𝛼𝑁𝑁+1 or 2𝐿𝐿𝐿𝐿𝑁𝑁+12 . Note that in the noiseless case, the evolution trace of b-coefficient and its back 
rotation line are exactly the same, so a perfect recovery of b-coefficient can be achieved. However, in the noisy case, 
eigenvalue evolves in a random-walk manner and the b-coefficient evolution trace is approximately the summation of 
the random walk. In this case, the evolution trace and back rotation line will never be the same. More specifically, the 
back rotation line for ln|𝑏𝑏𝑁𝑁+1| is 𝑟𝑟(𝑥𝑥) = 2𝐿𝐿𝛼𝛼𝑁𝑁+1(𝑥𝑥 − 𝑁𝑁) + 𝑟𝑟𝑁𝑁+1, where 𝑟𝑟(𝑥𝑥) = ln|𝑏𝑏(𝑥𝑥)|, 𝑟𝑟𝑁𝑁+1 = ln|𝑏𝑏𝑁𝑁+1| and 𝑥𝑥 =
𝑧𝑧/𝐿𝐿 for clear notation. Then,  

Var[𝑟𝑟(𝑥𝑥)] = 4𝐿𝐿2(𝑥𝑥 − 𝑁𝑁)2Var(𝛼𝛼𝑁𝑁+1) + Var(𝑟𝑟𝑁𝑁+1) + 4𝐿𝐿(𝑥𝑥 − 𝑁𝑁)cov(𝑟𝑟𝑁𝑁+1,𝛼𝛼𝑁𝑁+1) = 4𝐿𝐿2𝜎𝜎𝛼𝛼2(𝑁𝑁 + 1)[𝑥𝑥(𝑥𝑥 − 𝑁𝑁) + 𝑁𝑁(2𝑁𝑁+1)
6

] (1) 

where E[𝛼𝛼𝑖𝑖𝛼𝛼𝑁𝑁] = 𝑖𝑖𝜎𝜎𝛼𝛼2 has been used, and 𝜎𝜎𝛼𝛼2 is introduced as the variance of the noise added to 𝛼𝛼 at each EDFA, which 
can be determined by simulation or experiment. The 𝑁𝑁(𝑁𝑁 + 1)(2𝑁𝑁 + 1) ≈ 2𝑁𝑁3 term derived from the variance of 
𝑟𝑟𝑁𝑁+1, and note this cube dependence is consistent with the Gordon-Haus effect [8]. To minimize Var[r(x)], we let 
𝑑𝑑
𝑑𝑑𝑑𝑑 Var[𝑟𝑟(𝑥𝑥)] = 0 and obtain 𝑥𝑥0 = 𝑁𝑁/2. Similarly, the back rotation line for ∠𝑏𝑏𝑁𝑁 is 𝜑𝜑(𝑥𝑥) = 2𝐿𝐿𝛽𝛽𝑁𝑁+12 (𝑥𝑥 − 𝑁𝑁) + 𝜑𝜑𝑁𝑁+1, 
where 𝜑𝜑 represents ∠𝑏𝑏. Thus, 

Var[𝜑𝜑(𝑥𝑥)] = 4𝐿𝐿2(𝑥𝑥 − 𝑁𝑁)2Var(𝛽𝛽𝑁𝑁+12 ) + Var(𝜑𝜑𝑁𝑁+1) + 4𝐿𝐿(𝑥𝑥 − 𝑁𝑁)cov(𝜑𝜑𝑁𝑁+1,𝛽𝛽𝑁𝑁+12 ) ≈ 4𝐿𝐿2𝜎𝜎𝛽𝛽2(𝑁𝑁 + 1)[𝑥𝑥(𝑥𝑥 − 𝑁𝑁) + 𝑁𝑁(2𝑁𝑁+1)
6

] (2) 

where 𝜎𝜎𝛽𝛽2  stands for the variance of noise to 𝛽𝛽  at each EDFA. We have used Var(𝛽𝛽𝑁𝑁+12 ) = Var[(𝑤𝑤𝑁𝑁+1 + 0.5)2] =
 Var(𝑤𝑤𝑁𝑁+12 ) + Var(𝑤𝑤𝑁𝑁+1) + 2cov(𝑤𝑤𝑁𝑁+1,𝑤𝑤𝑁𝑁+12 ) = 2𝜎𝜎𝛽𝛽4(𝑁𝑁 + 1)2 + 𝜎𝜎𝛽𝛽2(𝑁𝑁 + 1) , cov(𝜑𝜑𝑁𝑁+1,𝛽𝛽𝑁𝑁+12 ) = 2𝐿𝐿∑ cov(𝛽𝛽𝑖𝑖2𝑁𝑁

𝑖𝑖 = 1 ,𝛽𝛽𝑁𝑁+12 )  =
2𝐿𝐿∑ {cov(𝑤𝑤𝑖𝑖2𝑁𝑁

𝑖𝑖 = 1 ,𝑤𝑤𝑁𝑁+12 ) + E[𝑤𝑤𝑖𝑖𝑤𝑤𝑁𝑁+1]} = 2𝐿𝐿 ∑ �2𝑖𝑖2𝜎𝜎𝛽𝛽4 + 𝑖𝑖𝜎𝜎𝛽𝛽2�𝑁𝑁
𝑖𝑖 = 1 . The 𝜎𝜎𝛽𝛽4 terms were then neglected as 𝜎𝜎𝛽𝛽2 ≪ 1 in practice, 

and we obtained the final expression. Let 𝑑𝑑𝑑𝑑𝑑𝑑 Var[𝜑𝜑(𝑥𝑥)] = 0, and we also obtain 𝑥𝑥0 = 𝑁𝑁/2.  

In short, both the variance of the amplitude and angle of the noisy b-coefficient is minimized when the back rotation 
length is half of the full transmission distance. Such result has some resemblance to the optimal scale factor for nonlinear 
phase noise compensation in chromatic dispersion-free scenario [9]. Note that when a full back rotation of the nonlinear 
spectral phase happens (𝑥𝑥 = 0), both the variance of ln|𝑏𝑏| and 𝜑𝜑 will be as large as those at the receiver, hence a full 
back rotation does not help to reduce the noise on b-coefficients at all. 
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3. Results 

We conducted simulations on a 40×50 km EDFA system with fiber loss of 0.2dB/km. 1024 path-averaged 1st-order 
soliton pulses with 16APSK-modulated b-coefficients were used to estimate the variance of the absolute value, angle, 
and SNR of the b-coefficients during the forward evolution and back rotation process. The ratio of soliton’s FWHM to 
symbol interval was set to 8.8 to avoid interactions between the adjacent solitons so the effect of noise is isolated. We 
studied the evolution of eigenvalues and b-coefficients of the soliton pulses every 10 km, and for back rotation, we 
evaluated the b-coefficients every 100 km. Fig. 3a shows the evolution of 𝛼𝛼 and the histogram of its “jumps” at each 
EDFA. It can be seen that 𝛼𝛼 is roughly constant between EDFAs but randomly jumps after each EDFA. Fig. 3b shows 
the evolution and back rotation traces of ln|𝑏𝑏| and ∠𝑏𝑏, where the red and black dots represent the difference between 
the current b-coefficient to its initial value of each random pulse during forward evolution and back rotation. The 
variance indeed reaches its minimum and SNR reach the maximum near the midpoint of the full transmission distance 
and the SNR for full back rotation is similar to that at Rx, in agreement with the theoretical analysis. 

                                        
Fig. 3 (a) Evolution of 𝛼𝛼  and the histogram of 𝛼𝛼  noise at each EDFA (only 1/10 of the traces are shown for visual clarity); 
(b)Evolution and back rotation of ln|𝑏𝑏| and ∠𝑏𝑏; (c) Variance of ln|𝑏𝑏|, ∠𝑏𝑏 and the SNR of b-coefficient during back rotation; (d) 
Simulated and analytic correlation coefficients between the 𝑏𝑏 and 𝜆𝜆 during back rotation. 

We also found that the SNR of the signal using the proposed method are similar to that by the LMMSE method [2] 
and we found that further applying LMMSE to the half back rotated signal does not improve the SNR much. This 
motivates us to investigate the correlation between the b-coefficient and the eigenvalue along the back rotation process, 
since LMMSE essentially makes use of this correlation to denoise b-coefficient. With the noise model described above, 
the correlation coefficient between 𝑟𝑟(𝑥𝑥), 𝛼𝛼𝑁𝑁+1 and 𝜑𝜑(𝑥𝑥),  𝛽𝛽𝑁𝑁+1can be obtained from the derivations above as 

𝜌𝜌(𝜑𝜑(𝑥𝑥),𝛽𝛽𝑁𝑁+1) ≈ 𝜌𝜌(𝑟𝑟(𝑥𝑥),𝛼𝛼𝑁𝑁+1) = (𝑥𝑥 − 𝑁𝑁 2⁄ ) �𝑥𝑥(𝑥𝑥 − 𝑁𝑁) + 𝑁𝑁(𝑁𝑁 + 1)(2𝑁𝑁 + 1) 6⁄⁄ (3) 

The analytical expression matches the simulated correlation coefficients quite well as shown in Fig. 3(d), and clearly 
the correlation coefficient reduces to zero with half back rotation and reaches to its maximum of ±√3/2 with no or full 
back rotation. 

4. Conclusions 

We propose back rotating the received noisy b-coefficient by half of the transmission distance with the received noisy 
eigenvalues. The effectiveness of half back rotation was derived analytically and shown numerically, and it gives the 
same performance compared to LMMSE but with much less calculation complexity. 
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