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Abstract: We propose a physical layer key distribution scheme based on signal hiding 

and concatenated coding. Experimental results demonstrate that an error-free key can 

be obtained with the key generation rate of 2.5 Gbps over the 80-km standard single-

mode fiber. 

 

1.  Introduction 

Optical fiber communication without the secure key faces information leakage due to the long 

distance and complex environment, so it is urgent to seek a suitable secure key generation and distribution 

(SKGD) scheme. Quantum key distribution with theoretical unconditional security faces some practical 

challenges [1], so classical SKGD schemes have attracted attention [2–7]. Zaman et al. utilized the 

polarization mode dispersion effect as a randomness source to generate the key [2]. Then, an error-free 

SKGD scheme was proposed by combining the birefringence distribution with the state of polarization 

[3]. For a greater KGR, a high-speed chaotic polarized scrambler [4] and an optical chaos signal [5] was 

introduced. By employing amplified spontaneous emission source, an error-free key generation rate 

(KGR) of 10.1 Gbps was achieved over 10-km standard single-mode fiber (SSMF) [6]. On the other 

hand, a secure and error-free key distribution scheme using a Raman ultra‐long fiber laser was researched 

to achieve the 500-km key distribution distance with the KGR of 100 bps [7]. However, the above 

schemes require the introduction of an external random source, additional device, or special structure to 

realized high-speed or long-range key distribution. 

In this paper, we propose a SKGD based on signal hiding and concatenated coding in coherent 

optical system, which is compatible with the current fiber infrastructure without the pre-shared 

information, external random source, and additional device. By obtaining an error-free key with KGR of 

2.5 Gbps over the 80-km SSMF, a record high bit rate-distance product of 200 Gbpskm is successfully 

achieved. 

2.  Scheme principles 
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Fig. 1. The diagram of key generation and distribution scheme with signal hiding and concatenated coding. 

Fig. 1 shows the diagram of the proposed SKGD scheme, which is mainly divided into four parts: 

high-order TQAM signal mapping, key generation, key concatenated coding including LDPC coding and 

differential coding, and key distribution including key embedding and extraction. We assume that Alice 

and Bob are legitimate parties, and Eve is an attacker who can steal signals with the best eavesdropping 

condition. It is worth emphasizing that only Alice knows basis states and pilot symbols, and only Bob 

knows the scrambling rules and quantization parameters. 

(1) High-order signal mapping: According to the method of encrypting low-order signal to higher-

order signal in quantum noise stream cipher (QNSC), Alice generates 22+10×22+10 TQAM signal with 2-

bit data and 10-bit basis states in In-phase (I) and Quadrature-phase (Q) components [8], and sends it to 

Bob.  
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(2) Key generation: Bob extracts noise of system according to the received and known training 

sequences (TS), which is true random noise with Gaussian distribution. After scrambling and 

quantization, he can obtain the initial key. Because only Bob knows the scrambling rules and quantization 

parameters, Eve cannot get the same initial key as it of Bob.  

(3) Concatenated coding: Differential coding is performed before LDPC coding for the initial key. 

It ensures that the incorrect key is obtained when the key error rate (KER) is higher than the FEC 

threshold of LDPC.  

(4) Key embedding: The encoded initial key is mapped into 4 QAM, and its average symbol energy 

is adjusted to 
keyP . 

keyP  is smaller than the average symbol energy of Bob’s received TQAM signal 

TQAMP  to realize the key signal hiding, and their ratio is 
p key TQAMR P P= . Then the key signal 

keyS  is 

embedded into the high-order TQAM signal 
TQAMS  to generate an overlapped signal (

key TQAMS S+ ). 

Finally, Bob sends the overlapped signal back to Alice.  
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Fig. 3. (a) Pilot symbols of Alice and Eve; (b) -(c) Algorithm block diagram of Eve and Alice. 

Only Alice knows pilot symbols, so Bob cannot recovery phase with pilot and Eve can only make 

phase alignment based on pilot symbols she received. Alice can extract the key signal from 16 QAM 

signals with basis states, but Eve obtains the key signal from 212×212 TQAM signals. The detail of 

recovering 212×212 TQAM signal to 16 QAM signal are given in [8]. Therefore, Alice can further employ 

some existing algorithms to process 16 QAM signal to extract key signal, but they are not effective for 

ultra-high-order signal, especially the signal with special modulation format. It causes the difference 

between Alice and Eve and ensures the security of the proposed scheme. In the proposed scheme, after 

recovering 16 QAM, ML carrier phase recovery (CPR) algorithm is used to eliminate the residual phase 

noise, and a T-spaced post decision-directed least mean square (DD-LMS) equalizer is used to 

compensate residual inter symbol interference and device penalty [9]. The specific processing flow is 

shown in Fig. 2. After extracting 4 QAM key signal, Alice implements decoding to get the error-free 

initial key and the final key is obtained through the privacy amplification (PA). 

3.  Experiments 
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Fig. 4. Experimental structure diagram. (a1) -(a2) BTB system for Eve; (b) SSMF system for Alice and Bob; (c1) -(c2) Alice’s 

DSP; (d1) -(d2) Bob’s DSP; (e) Eve’s DSP 
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Fig. 4 shows a dual polarization coherent optical communication system over several kilometers 

SSMF and equipment parameters, where Eve has the best eavesdropping condition (back- to-back system) 

as shown in Fig. 4(a1) and Fig. 4(a2).  

Alice generates the data by the pseudo random number generator (PRNG), and maps to a 16 TQAM 

signal. After adding basis, the 212 × 212 TQAM signal is obtained. I/Q data is converted to the electrical 

signal by an arbitrary waveform generator (AWG) with 5 GSa/s sampling rate. The signal is loaded onto 

optical carrier through an I/Q modulator. Each frame includes ~3.6% pilot symbols and ~6.4% QPSK-

like TS. Bob detects and captures the signal by coherent optical receiver and a real-time oscilloscope 

with the sampling rate of 20 GSa/s. After simple processing and key generation, the differential coding 

and LDPC coding with code rate 1 3LDPCR =  is performed. Bob maps the initial key into 4 QAM, 

embeds it into the received signal with Rp=0.03, and sends the overlapped signal back to Alice with the 

same settings. Then, Alice extracts key signal with her sent and received 16 QAM signals. The DSP 

modules of Alice and Bob are shown as Fig. 4(c) and Fig. 4(d). Eve steals signals from both transmitters, 

and her DSP modules are given in Fig. 4(e). Based on experiments, KERs before decoding with different 

distribution distances are shown in Fig. 5(b), and Fig. 5(c) gives KERs for each stage of decoding. After 

decoding, Alice can get the error-free initial key but KER of Eve’s initial key is ~0.5.  
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Fig. 5. Experimental platform and results. 

In order to further ensure the security of key distribution, PA is performed according to Eve’s KER 

before decoding. The amount of information obtained by Eve is ( ) ( )( )  : 1 Evet n I B E n H KER=  =  − , 

where the length of the initial key n is 1.296×106. The compression ratio CR for PA is (n−t−s)/n with 

s=512. Therefore, in the 80-km SSMF system, the final KGR is 

( ) ( ) 2.5 Gbps21 6.4% 3.6% 5 2 /  . / 2LDPCTS pilot GBaud bit symbol pol RK CRGR − −   =      (1) 

4.  Conclusion 

A key distribution scheme based on signal hiding and concatenated coding is studied. By embedding 

key into high-order TQAM signal, this scheme is realized in an optical fiber communication system. 

Experimental results demonstrate that an error-free key can be obtained with a KGR of 2.5 Gbps over 

80-km SSMF, which achieves the highest bit rate-distance product currently. Simultaneously, the 

proposed scheme does not require the pre-shared information and additional device. In addition, the 

proposed scheme is also suitable for single-fiber bidirectional systems. 
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