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Abstract: We demonstrate a real-time ML-assisted network automation pipeline for dynamic, 

autonomous link-capacity allocation based on traffic-flow forecasting for optical metro aggregation 

networks. Its performance is compared to that of a classic, static bandwidth provisioning scheme. 
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1. Overview 

The future 6G mobile technology is forecasted to bring a new era of Internet of Everything (IoE), in which things, 

humans, sensors, computing elements and processes, along with the robots and autonomous vehicles will all be 

interconnected within a converged physical-virtual ecosystem, generating Zettabytes of exchanged data [1]. As such, 

6G will rely heavily on the underlying optical transport infrastructure to achieve high capacity, low latency, enhanced 

reconfigurability, and improved energy efficiency [1,2]. To satisfy all these requirements, optical networks will have 

to become intrinsically flexible, allocating channels dynamically on the fly and providing resources on demand. In 

traditional optical network architectures, the link-capacity is configured statically, remaining fixed over long periods 

of time. With fluctuating traffic patterns and flows, as well as constantly varying user demands, the static link-capacity 

provisioning often results in over- or under-provisioning of network resources, leading to suboptimal and inefficient 

network performance. With commercial availability and continuous development of tunable, flexible and 

programmable optical components, such as variable bit-rate coherent transceivers [3], the statically configured optical 

networks are slowly evolving into dynamic, reconfigurable and programmable infrastructures [4]. By enabling 

dynamic link-capacity allocation, optical networks can effectively adapt to changing traffic demands, ensuring that 

resources are allocated when and where they are needed, thus enhancing the network operation efficiency, maximizing 

the utilization of existing infrastructure, and reducing the resulting energy consumption. 

One of the most effective ways to achieve autonomous, dynamic link-capacity allocation is by means of accurate 

forecasting of the future traffic behavior, namely the expected data rate and its variability over time. For that purpose, 

a large number of machine learning (ML) models for traffic-driven service provisioning has been previously proposed 

and investigated, and extensively reviewed [4]. A common aspect frequently seen in these works is that the high 

burstiness peculiar to real traffic flows is often neglected, resulting in traffic sets representing hourly-average data 

rates, when their actual traffic bursts surpass the average maxima [5]. This is a major reason why fine granular 

telemetry data with second or minute granularity is so essential in mitigation of under-provisioning risk [5-7]. 

Moreover, to the best of our knowledge, none of these works presents an actual demonstration of dynamic link-

capacity allocation conducted on a real photonic testbed, but focus primarily on simulative analyses. 

The main contributions of this work are three-fold: (1) we demonstrate a real-time ML-assisted control 

loop/pipeline for autonomous capacity provisioning on an optical metro-aggregation network testbed located at 

Fraunhofer HHI’s premises in Berlin, (2) employ the novel Temporal Fusion Transformer (TFT) model [8] for traffic 

forecasting and subsequent dynamic capacity allocation, (3) and apply it on bursty, fine-granular traffic streams. 

2. Innovation 

In this work, we developed and deployed a dynamic capacity allocation control loop (Fig. 1 (a)) for autonomous link-

capacity adjustment of an optical transponder, which is part of an optical metro-aggregation network (Fig. 1 (b)). The 

testbed consists of a hardware and a software layer of components, whose main interoperability is presented in a 

detailed workflow diagram (Fig. 1 (c)). The innovative aspect of this work is many-fold. First and foremost, although 

the concept of traffic-prediction-based dynamic capacity allocation is not new and has been researched in quite a few 

theoretical and simulative studies [4], to the best of our knowledge, none of them has attempted to demonstrate it live 

on a real optical testbed, comprising commercial or experimental hardware, as well as open-source and self-developed 

software tools. Secondly, we developed and deployed several Python-based tools, such as a customizable telemetry 

agent for telemetry data streaming with second-granularity, an online traffic forecasting module employing the latest 

ML-model (TFT) for time-series prediction, as well as a dynamic capacity allocation and a NETCONF-native network 

reconfiguration module that computes and reconfigures the optical transponder according to the expected traffic load. 

Lastly, we showcase the first prototype of the capacity adjustment control loop in real-time, and visualize its operation 

using specially customized Grafana dashboards (Fig. 2). 
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3. OFC Relevance 

Our demonstration presents an ML-assisted network automation pipeline for real-time capacity provisioning using a 

metro optical transport testbed. We use state-of-the-art open-source software tools (e.g., InfluxDB, PyTorch, TFT, 

ncclient) to build an autonomous, cloud-native network automation pipeline for commercially available hardware. 

Given the highest level of expertise of the attending academic and industrial communities, OFC is by far one of the 

best environments to showcase our current prototype, as its attendees represent a large part of our target audience. 

4. Demo content & implementation 

The underlying hardware layer of the photonic testbed comprises a programmable optical network tester (ONT)/traffic 

generator from VIAVI, connected through 2xQSFP28 transceivers to a Mellanox aggregation switch, generating an 

aggregated traffic flow consisting of multiple bursty and cyclic traffic streams with a cumulative data rate ranging 

between 0 to 200G (Fig. 2 (a), green curve). The aggregation switch is connected to an Adtran QuadFlex-Transponder 

through 2x100G client ports. The transponder is also connected through its two configurable line/network ports to an 

Adtran MicroConnect ROADM. The two network ports are NETCONF-native, with tunable DWDM line rates ranging 

between 100G (QPSK) – 150G (8QAM) – 200G (16QAM). Three pairs of transponder-ROADM form the optical 

metro-ring network testbed presented in Fig. 1 (b). Worth noting is that the ONT and aggregation switch are meant to 

emulate the infrastructure and aggregated traffic originating from a variety of optical access networks, such as XGS-

PONs and passive WDM, which are currently being deployed to extend the photonic testbed. 

The software layer of the shown testbed consists of a Docker-containerized capacity allocation pipeline, running 

on an Ubuntu VM within the Fraunhofer Edge Cloud (FEC). Its operation can be summarized with the closed control 

loop depicted in Fig. 1 (a), with the detailed operation presented in the workflow diagram (Fig. 1 (c)). The main 

operation steps of the control loop comprise: (1) fine granular traffic monitoring and telemetry reporting enabled by a 

dedicated and customizable telemetry framework written in Python that is querying the aggregation switch on the 

ingress and egress traffic rates; followed by (2) a real-time TFT-based traffic forecasting. The TFT is an attention-

based deep neural network (DNN) optimized for multi-horizon (multi-step ahead) prediction – a feature particularly 

important for optical link-capacity adjustment, considering that the transponder needs up to 150 s for its different 

hardware settings such as modulation format, transmission rate, or optical frequency to be reconfigured to the new 

link-throughput. In this context, it is essential to emphasize that during the transponder reconfiguration phase, the 

traffic has to be rerouted at the aggregation switch level using load balancing and dedicated protection links, in order 

to prevent any traffic loss. This is a matter of current and future work, and will not be explicitly considered in this 

demo. Based on the forecasted traffic values, (3) the new capacity is computed as: 𝐶(𝑡𝑖+𝑛) = ⌈𝑅̃(𝑡𝑖+𝑛)/∆𝐶⌉, where 
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Fig. 1. (a) Demonstrated dynamic link-capacity allocation control loop. (b) The photonic testbed on which the 

demonstration is carried out, comprising the optical hardware layer, and the containerized control software layer 

running on a VM within the Fraunhofer Edge Cloud (FEC). (c) Detailed workflow of the dynamic link-capacity 

allocation/(re)configuration presenting all the involved hardware and software components. 

M3Z.3 OFC 2024 © Optica Publishing Group 2024

Disclaimer: Preliminary paper, subject to publisher revision



𝑅̃(𝑡𝑖+𝑛) is the n-th predicted traffic rate value relative to the current time instance 𝑡𝑖, and ∆𝐶 = 50G is the transponder 

capacity adjustment step. Phase (3) is finalized by sending a NETCONF <edit-config> RPC-request, and eventually 

concluded by phase (4) the actual line port-capacity reconfiguration, confirmed by a NETCONF <ok/> RPC-reply. 

A first implemented, operational example of the running pipeline is presented in Fig. 2. The generated traffic is 

monitored at the switch level, with a granularity of 3 s, and the traffic maxima are calculated each minute, resulting 

in a traffic envelope (Fig. 2 (a)). The TFT has been trained offline using a collected traffic envelope data, and then the 

trained model integrated into the online pipeline for real-time traffic forecasting. The forecaster predicts 5 traffic 

maxima ahead corresponding to the future 5 minutes, based on the last 30 maxima (i.e, past 30 min). The traffic 

forecaster is able to correctly predict the overall traffic evolution, however it still presents a challenge to correctly 

foresee some of the occurring traffic bursts, as these normally have a random nature specific to traffic outliers. Based 

on the forecasted traffic envelope (Fig. 2 (a)), the new required capacity is computed as presented above, with the 

over-provisioning value calculated every minute (Fig. 2 (b)). For visual performance comparison, Fig. 2 (c) presents 

the over-provisioning values of a dynamic (blue bars) versus a traditional static (red bars) link-capacity allocation. 

Note that the showcased traffic profile, increasing ramp-wise over time, is merely used to present the concept and 

pipeline operation clearly, when the capacity levels change. In the actual demo, more realistic traffic profiles will be 

deployed, such as the real, bursty Gaussian bell-shaped profile to emulate the daily tidal effect of traffic variation [5]. 
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Fig. 2. Grafana dashboard for demonstration of dynamic link-capacity allocation: (a) Example of aggregated bursty 

and cyclic traffic with a 3s traffic sampling granularity, its traffic envelope, and predicted envelope/traffic 

evolution. (b) Dynamic link-capacity allocation and the resulting over-provisioning. (c) Static/fixed link-capacity 

at 200G, and the comparison of over-provisioning amounts for dynamic vs. static capacity allocation schemes. 
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