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Abstract: We demonstrate an artificial intelligence (AI)-powered robot for optical net-
work operation automation and showcase three demos: 1) robot-driven event classification, 2)
modified LC duplex connector for robotic operation, and 3) AI inference acceleration using
an FPGA. © 2024 The Author(s)

1. Overview

Driven by advancements in computer vision and artificial intelligence, robots have made significant progress in
handling complex tasks. For example, the automotive industry employs robots for assembly, and warehouses
use them for activities like picking and placing items. Recently, we demonstrated an Artificial Intelligence (AI)-
powered robot capable of navigating between different network rooms and performing various optical network
operations, including fiber switching [1]. In this automated system, the robot first detects a single fiber manipula-
tion event for basic path verification and then physically disconnects fibers by unplugging Lucent Connector (LC)
duplex connectors from adapters; Fiber insertion is enabled by a Convolutional Neural Network (CNN) model
that uses images captured from left and right cameras to predict the robot gripper’s next movement; All the AI
algorithms in that system are executed on a remote server, which the robot communicates with through Wi-Fi.

In this paper, we enhance the automated system’s capabilities to manage complex path verification, boost power
efficiency, and reduce latency in model prediction. Specifically, the system can now 1) detect and classify multiple
fiber manipulation events with external random perturbations. 2) We design an LC-type duplex assembly with an
improved accuracy tolerance. The modified LC duplex assembly enables the system to use a single central camera
for fiber insertion without relying on CNN models. 3) Field programmable gate array (FPGA)-based control
accelerates AI inference, enhancing the system’s overall efficiency.

2. Innovation

Fig. 1a illustrates the experimental setup of an AI-powered robotic arm conducting automated operations. The
robot has a 7-degree of freedom (DoF) collaborative robotic arm [2] that can work alongside or autonomously
from human operators. A 2-finger gripper [3] is installed for handling a fiber adapter and connector and a built-in

Fig. 1: (a) Image showing the robotic arm and fiber patch-panel rack; (b) Top view of the gripper rolling the fiber pigtail during the Roll-60
event and swinging the pigtail during the Yaw-10 event; (c) Stokes parameter traces for the Roll-60 and Yaw-10 events, with the detection
model’s output represented by the red line; (d) Model architecture used to classify between Roll-60, Yaw-10 and measurements involving no
manipulation.
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camera is positioned directly above the gripper. The robot performs fiber unplug and insertion on a 19” fiber patch-
panel rack on which 1U fiber adapter panels with 24 LC duplex adapters are mounted. Duplex LC single-mode
fiber cables for bi-directional communications are connected to the panels and interconnect S4X400H optical
transponders (OTs) of a commercial Nokia 1830 PSS transport node (TN), configured via a software-defined
networking (SDN) controller. Polarization tracking with an update rate of 5 ms runs at the OTs. Robot Operating
System (ROS) [4] is implemented to facilitate sensor data publishing and robot control. The former receives
commands from the latter to perform different tasks.

The three demos are described below:

2.1. Multiple events detection and classification

The detection of a single event using a real-time coherent receiver [5, 6] was successfully applied in basic path
verification [1]. However, there are scenarios where multiple events need to be detected and analyzed for compre-
hensive path verification such as detecting shared risk group [7] under random environment perturbations. Fig. 1b
illustrates two fiber manipulation events: Roll-60 and Yaw-10. In Roll-60, the 2-finger gripper loosely grips and
rolls the fiber pigtail with a maximum angle of 60 degrees and repeats 1.5 cycles. In Yaw-10, the fiber pigtail is
swung 5 cycles horizontally with a maximum angle of 10 degrees.

Detection We detect the events using the temporal traces of the Stokes parameters (s1, s2, and s3 in Fig. 1c).
We gathered a dataset of 180 Stokes measurements, each lasting 60 seconds. Two-thirds of these measurements
include either the Roll-60 or Yaw-10 event, with each event occurring at a random offset within the measurement.
The duration of both robot-driven events is around 22 seconds. The remaining one-third of the measurements
do not involve any robotic fiber manipulation. The state of polarization was deliberately altered between the
measurements. The dataset was divided into training, validation, and test sets, with proportions of 60%, 20%,
and 20%, respectively. We utilize the same model as described in [1] for event detection. This model includes
1D convolutional layers, long short-term memory (LSTM) layers, upsampling layers, sigmoid layers, as well as
ReLU and normalization layers. The model’s output provides a binary weight for each temporal bin, with a higher
weight indicating the event’s location within the period. After training the model for 500 epochs, it achieved an
accuracy of 97.5% on the validation data and 96.8% on the test data. Fig. 1c visualizes the Stokes parameter traces
for the Roll-60 and Yaw-10 events, and the model’s output is represented by the red line, which accurately detects
and locates the events.

Classification We extracted 30-seconds from each of the 180 Stokes measurements as the input dataset. Two-
thirds of these measurements include either the Roll-60 or Yaw-10 event and the remaining do not involve any
robotic fiber manipulation. The dataset was divided into training, validation, and test sets, with proportions of
80%, 10%, and 10%, respectively. We applied a real-to-complex discrete Fourier transform to the input signals to
generate FFT data. Both the original input data and the FFT data were then passed through seven blocks of two
one-dimensional convolutional layers, a flatten layer, and two linear blocks, as depicted in Fig. 1d. Their outputs
are concatenated and fed through a linear layer with ReLU activation, followed by an additional linear layer for
making predictions. We trained the model using a one-cycle learning rate strategy, cross-entropy loss, and the
Adam optimizer, with a batch size of 4. Impressively, the model achieved a 100% accuracy on both the validation
and test datasets within 100 training epochs.

2.2. Efficient fiber insertion using modified LC duplex assembly

The images in Fig. 2a show that the unique ArUco markers [8] above duplex fiber adapters can be detected, and
their position and orientation in relation to the gripper can be estimated by analyzing the pattern. When inserting a

Fig. 2: (a) Image captured by the camera above the gripper (upper) and processed image showing marker detection (lower); (b) Comparison
between the original LC duplex adapter and connecter (blue) and their modified version (white); (c) Distribution of insertion duration; (d)
Distribution of power loss.
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connector longitudinally into an adapter from a distance of 60 mm, the accuracy of pose estimation for its marker
in both vertical and horizontal directions is within 0.75 mm. The robotic arm, with a repeatability of 0.1 mm,
necessitates an insertion tolerance of at least 0.85 mm to ensure successful insertion. We made modifications to
the shape of both the LC connector and the adapter and increased their beveled edges by 0.45 mm offset, as
illustrated in Fig. 2b. The difference between the adapter’s openness and the width of the connector is less than
0.2 mm. As a result, the insertion tolerance, which is approximately 1.0 mm, exceeds the required 0.85 mm and
should be appropriate for the insertion.

To evaluate the insertion efficiency, we initiated it from a longitudinal distance of 60 mm and a randomly gen-
erated starting position with a maximum horizontal and vertical distance of 3 mm to the adapter. In the alignment
stage, the gripper first adjusts its longitudinal orientation to match the adapter series, fine-tunes its horizontal and
vertical positions to maintain precise alignment with the adapter, and then moves to a distance of 8 mm from
the adapter. During the insertion stage, we set the step length to 1.5 mm with a 0.2 seconds interval between
steps while continuously monitoring the actuators’ torque of the robotic arm. The insertion is considered complete
when the gripper encounters significant resistance, as indicated by a torque reading on the actuator 4 exceeding
19.5 Nm. The process achieves a 100% success rate over in total of 120 trials, with an average alignment duration
of 22.9 seconds. Fig. 2c displays an average insertion duration of 8.1 seconds, which is 10 seconds shorter than
when using a CNN model [1]. Fig. 2d illustrates that the average loss is 0.17 dBm, indicating that the modification
has a negligible impact on the mating mechanism.

2.3. AI inference acceleration using an FPGA

The remote server control discussed in the previous work [1] is well-suited for handling complex tasks that require
significant computational power and straightforward software modification. To expand our system’s capabilities,
we introduce FPGA-based control using the VitisT M AI platform [9] from AMD to improve power efficiency and
reduce low latency. The camera-guided fiber insertion model described in [1] is inspected, quantized, and compiled
before being deployed on ZynqT M UltraScale+ KV260 [10]. Negligible accuracy degradation is observed after
quantization from the floating-point graphics processing unit (GPU) model [1] to an FPGA deployable fixed-point
8-bit model.

3. OFC Relevance And Demo Content

Leveraging the spatial domain and spatial switching to scale optical network capacity [11], employing optical
networks for environmental sensing [12] and AI assistance in optical network operation and maintenance [13]
are all being actively investigated. This paper covers a robotic passive fiber cross-connect, fiber path verification
employing real-time coherent receivers and AI inference acceleration, which are well aligned with the research
interests in photonics society and OFC.

Three demos will be presented to the OFC audience. We will begin with the introduction of ROS programming
and robot control mechanism applied in the demos, and illustrate the architecture and operation of the system.
Attendees will have the opportunity to remotely control a robot to perform various tasks. The first two demos will
be delivered through real-time video streaming, with two video streams displayed on the monitors. One stream
shows the robot’s actions in front of the fiber patch panel, as depicted in Fig. 1a. The other displays the video
captured by the built-in central camera on the robotic arm, along with a virtual overlay after marker detection, as
depicted in Fig. 2a. The AI inference acceleration demo will be demonstrated on-site using an FPGA.
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