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Abstract: We introduce an automated Compositional Learning Framework, which can
dynamically combine ML models to create a composite ML service. It leverages the MLOps
principle to streamline drift-aware ML workflows. We showcase its applicability in the dy-
namic Routing Modulation and Spectrum Allocation scenario with an open disaggregated
control platform. © 2023 The Author(s)

1. Overview

As the need for increased capacity in B5G and 6G applications continues to rise, optical networks are undergoing a
transformation towards greater dynamism and disaggregation. This evolution involves integrating intent-based au-
tonomous operations facilitated by expanding artificial intelligence (AI) and machine learning (ML) within optical
networks. The wide-ranging AI/ML applications of this integration are outlined in [1]. Despite diverse applica-
tions, the majority of present ML models in optical networking are designed for specific tasks, utilizing a single
deployed model on the ML Operations (MLOps) platform [2]. MLOps is a set of practices that aim to streamline
and automate the end-to-end ML lifecycle from data preparation; model development, training, and validation;
to deployment and monitoring, known as ML pipeline. As these task-specific ML models grow in complexity
over time, the demand for cloud resources for training and deployment also escalates, posing challenges in the
deployment and scaling of these models.

On the other hand, two or more ML models/services can be integrated into a series of tasks, where each task
corresponds to a specific ML model, contributing to the execution of a complex operation. Breaking down intri-
cate ML tasks into simpler components and then composing them (sequentially or in parallel) into a complete
operation is known as Compositional Learning (CL) [3]. This approach envisions a smooth assembly of existing
AI/ML models or services, favoring re-usability, to create a novel, composite AI/ML service capable of tackling
complex use cases effectively. However, several challenges associated with CL remain unaddressed, including
(i) auto-decomposing and distributing ML models, (ii) dynamically composing/stitching multiple ML models,
(iii) automatically handling ML model drift, and (iv) runtime ML pipeline programmability (i.e., the ability to
change one or multiple models in the ML model chain). These challenges collectively form the requirement of
intent-based CL operations. Consequently, there is no prototype dealing with this crucial aspect.

To address this, we present and demonstrate for the first time a Compositional Learning Framework capable
of dynamically stitching multiple ML models, handling the ML model drift, and enabling the programmable ML
runtime in the dynamic Routing Modulation and Spectrum Allocation (RMSA) scenario.

2. Innovation

To streamline the development and execution of CL-related applications within the control and management plane,
a modular workflow-based Compositional Learning Framework (CLF) has been created based on the micro-
service architecture. This framework is designed to address the challenges associated with CL and serves as a
foundation for intent-based CL operations. As shown in Fig.1a, the framework consists of a CL and ML Pipeline
Manager (CPM), a CL Stitching Engine, a CL Workflow Execution Engine, an MLOps Adapter, and a CL Graph-
ical User Interface (GUI). CPM is responsible for coordinating the entire lifecycle of ML model chains, exposing
CL features to be consumed by external entities such as the SDN controller and its applications. The CL Stitching
Engine guides and validates the stitching of multiple ML models at design time. The CL Workflow Execution
Engine is the run-time engine responsible for executing the CL workflows generated during design time. The
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Fig. 1: (a) Compositional Learning Framework; (b) Compositional Learning Workflow

CPM manages the distribution of ML pipelines on various MLOps platforms. The MLOps adapter is a mediation
component that translates common ML APIs into specific MLOps APIs. Finally, a CL GUI is designed to enhance
the user experience and simplify CL stitching and management. The CL GUI provides a unified portal to enhance
the user experience and simplify the CL stitching and management. The CLF is running on top of MLOps plat-
forms to enhance the efficiency, reliability, and scalability of ML pipelines; while encompassing version control,
continuous integration and deployment, model testing, and constant monitoring and maintenance. In addition, the
CLF relies on MLOps to automatically monitor, evaluate, and detect drifts in the performance of each model in
the chain through the execution of ML pipelines.

The operational workflow of the CLF is shown in Fig. 1b. First, we have the Upload Trained Model stage, which
involves uploading an onboarding package to the CPM. This onboarding package consists of the model, a set of
artifacts supporting the model, a manifest containing the model metadata such as versioning information, required
libraries, candidate models to be combined with the onboarded model, etc., and a set of input and output parameter
types. The onboarding preparation step does not require prior domain-specific knowledge, e.g., optical network
systems or MLOps; thus, simplifying significantly the user experience. Second, the CL Design and Onboarding
stage is executed during the design time to construct an ML model chain for a particular use case. Finally, we enter
the Runtime Execution Stage to use the inference ML services to serve the use-case.

We demonstrate and validate the key features of the Compositional Learning Framework through its implemen-
tation for the drift-aware CL-based dynamic Resource Allocation use-case.

3. OFC Relevance

This demonstration will introduce a novel architectural design that implements Compositional Learning through
seamless interaction among three key components: (i) the CL Framework, (ii) the Cloud-native Optical Transport
Control Platform, and (iii) the MLOps platform. This innovative architecture enables ML model stitching, orches-
tration, and automated life-cycle management to control the optical network. Additionally, these tools will become
an inevitable part of the development journey towards AI-native solutions for the realization of optical network
automation, as they bring significant benefits for ML model designers, vendors, telco, and cloud operators.

4. Demo content and implementation

The demonstration is performed live on our remote physical workbench of Nokia 1830 equipment. We use the
Cloud-native Optical Transport Control Platform in [4] to manage a network of four PSS-32 nodes (see Fig. 2a).
Furthermore, the platform is extended with the CLF and two MLOps platforms. Each ML model has been trained,
served, and monitored in its dedicated ML pipeline prior to the demo. The demo is described as follows:

Step 1: Design and Onboarding phase - The user navigates through the ML model catalog on the CL GUI.
In this demonstration, the user selects the RMSA Deep Reinforcement Learning (DRL) model as the main actor
to solve the dynamic Resource Allocation problem. The DRL agent performs online learning with the network
state provided by the SDN Controller (SDNC) using RLOps principles [5]. Furthermore, to enhance the perfor-
mance, the CPM recommends various combinations of the selected model with others and how to assemble them
to form a composite ML service. The Link Utilization and Fragmentation (LUF) Forecaster and the Quality of
Transmission (QoT) Classifier are recommended to combine with the RMSA DRL model (DeepLUF-RMSA) to
form a composite ML service chaining. Then, the user chooses the components, stitches them, and sends the final
configuration to the CPM for deployment. The CPM triggers the ML pipeline of each model on corresponding
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Fig. 2: (a) Optical Control Platform and Testbed; (b) MLOps pipeline ; (c) CL-based resource allocation workflow

MLOps platforms and deploys their inference services in the Cloud-native Optical Control Platform.
Step 2: Inference phase - The user creates a TAPI connectivity service request via the portal of the SDNC. The

request is forwarded to the CPM along with other network state information. The CPM invokes the LUF Forecaster
to predict the future link utilization and fragmentation of the network. The forecast LUF is processed with the set of
candidate paths and current topology details to form the observation for the agent in DeepLUF-RMSA. The CPM
receives the selection of DeepLUF-RMSA and combines it with monitoring data from the network to serve as the
input to the QoT Classifier, which checks the feasibility of the selected lightpath. The CPM sends the result of
the composite Resource Allocation task to the SDNC. Finally, the SDNC provisions the service on corresponding
network elements and collects the performance monitoring (PM) data. The PMs are sent back to the CPM to assess
the performance of the models based on their prediction accuracy. This complete workflow is shown in Fig. 2c,
where a task or sub-task can correspond to an ML model chain inference service.

Step 3: Monitoring phase - We continue to serve more requests and monitor models’ performance. All monitor-
ing data of models are shown on a dedicated dashboard. Over time, we simulate a drift event in the QoT Classifier
where its prediction accuracy falls below a given threshold. The CPM triggers a drift adaptation mechanism to
execute a complete ML pipeline as in [6]. In the meantime, the CPM updates the composite ML service chain to
let the SDNC use GNPy [7] as an alternative solution for QoT validation.

Step 4: Recovery phase - The ML pipeline to recover the QoT Classifier performance contains the following
main steps: (i) processing on newly collected data; (ii) retraining of the model; (iii) evaluating model performance;
(iv) serving the model (see Fig. 2b). Once the performance of the QoT Classifier surpasses the threshold, the CPM
rolls back to the initial ML service chain automatically. The Optical Control Platform can continue serving the
service requests seamlessly.
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