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Abstract: We demonstrate a novel, physical assumptions-based method – recalibration learning, that 

transfers Gain and Noise Figure ML models across remote optically pumped amplifiers. Spectral 

measurements over just two configurations on a target device ensure reliable transfer. © 2024 Nokia 

 

1. Introduction 

Optical amplification is a vital part of contemporary optical networks. It comes in many types and forms, with the 

Erbium-Doped Fiber Amplifier (EDFA) being the most deployed type of amplifier. Its working principle is based on 

stimulated emission, which requires a light source, a pump, that transfers its energy to the optical signal. The pump is 

often located in the immediate proximity to EDFA along with its electric power supply, however, it is not always the 

case, namely in unrepeatered lines. In that case one can use Remotely Pumped Optical Amplifier (ROPA) – an EDFA 

pumped by remote optical pump delivered over the same fiber as signal, contributing also to Raman amplification [1]. 

The exhaustive and precise modeling of EDFA is required to reduce transmission margins and to correctly design 

optical networks [2]. To address these needs, analytical and Machine Learning (ML) based models of EDFA are 

proposed in the literature [3,4]. ML models are based on exhaustive EDFA characterization with further training on 

obtained data. The best model to have is a model valid across devices, which is a challenging objective. A model valid 

for 3 EDFAs was demonstrated [5], but implies a common characterization over all devices, which is time-consuming, 

and it is unclear how many EDFAs one need characterize to obtain a general model. Furthermore, it comes with 

general model’s precision degradation for a particular device when compared to device-specific model. There are 

proposals to overcome these problems: a) transfer learning with retraining pretrained ML models using small amount 

of measurements over new devices, with one ML model per EDFA [6], b) use of auxiliary Artificial Neural Networks 

(ANN) that are EDFA-specific and paired with a main ANN, trained on a reference EDFA [7], c) an efficient ML 

model enabling its transfer to a target device via 1 spectral measurement on it, also with an ML model per EDFA [8]. 

In this study we propose a method of ROPA ML model transfer across other ROPAs: recalibration learning. This 

method aims at finding a device-specific set of parameters, that helps to adapt the reference ML model to another 

device, without model retraining. We exploit physics-based assumptions: we suppose that differences between ROPAs 

originate from efficiencies to receive the input signal, transfer the pump power to the signal and deliver the output 

signal. Thus, the performance of ROPA may be modelled and adapted to another via 3 recalibration 

factors/corrections: on the total input power, total output power and power of the optical pump. In particular, we apply 

the recalibration factors to ROPA ML model’s inputs and outputs, so to replicate the differences between ROPAs in 

reality. We summarize the functioning principle of the model transfer in Fig.1 and develop it in further sections. 

We show that characterizing a target device at a flat input spectrum over two pump powers, comprising just 0.21% 

of original dataset, is enough to determine recalibration factors and transfer the reference ML model to a target device. 

2. Characterization of ROPAs and design of reference Gain and NF ML models 

We assemble a setup depicted on Fig.2 a) to characterize different ROPAs of the same make: ROPA 1, 2 and 3. ROPA 

1 plays the role of a reference device on which we train ML models of wavelength depended Gain and NF, while 

ROPA 2 and 3 are target devices to which we aim to transfer trained ML models. We control the optical signal sent 

to ROPA via Wavelength Selective Switch (WSS), which carves from Amplified Spontaneous Emission (ASE) source 

a spectrum of desired shape, sampled over 84 channels of 50GHz width in C-band. The signal is then attenuated by 

Variable Optical Attenuator (VOA) to emulate multiple total input powers Pin
tot. A ROPA is pumped by an optical 

 
 Fig. 1. Functional scheme of adaptation of a reference ML model of ROPA to any other ROPA (i.e., recalibration model) for: a) Gain, b) NF 
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pump at λ=1485nm, brought over 75km of fiber. We emulate multiple powers of the pump P1485 entering ROPA via 

another VOA. A ROPA is characterized by measuring Gain and NF under different forms of input spectrum, under 

different values of Pin
tot and P1485. To characterize ROPA 1 we set Pin

tot and P1485 as next: Pin
tot∈[-30,-5] dBm at 5 dB 

step and P1485∈[5,12] dBm at 1 dB step, totaling 48 configurations. We test these configurations under next spectral 

loadings: a) for training dataset we have 15 special spectral profiles, b) for cross-validation dataset we have 5 spectral 

profiles with -20, -15, -10, 10, 15 dB of tilt (over 84 channels), c) for test dataset we have 5 flat profiles (Fig.2b): one 

full, 1st and 2nd halves, 3rd and 4th quarters of C-band, plus 5 spectral profiles with -5, -4, -2, -1, 5 dB of tilt. Considering 

training and cross-validation dataset, we conclude that we need 48×(15+5)=960 configurations for ML model training. 

The measurements on ROPA 2 can be summarized as next: we set Pin
tot and P1485 to cover Pin

tot∈[-30,-5] dBm at 5 

dB step and nominal P1485∈[6,13] dBm at 1 dB step, totaling 48 configurations. We measure each configuration under 

5 profiles: flat C-band profile, one profile at -5 dB tilt, and 3 spectral profiles with a group of 12 channels elevated by 

15 dB over others, placed on the left, center, or right part of the spectrum (Fig.2c). The latter profiles are fabricated to 

test ROPA under extreme conditions. Thus, Gain and NF of the ROPA 2 are measured over 48×5=240 configurations. 

Measurements on ROPA 3 are similar to those of ROPA 2 with next differences: P1485∈[6,12] dBm at 1 dB step, so 

42 configurations per spectral profile, 210 in total, and for the tilted profile we have -2dB of tilt, instead of -5dB. 

The reference Gain and NF ML models are trained on ROPA 1 measurements, as in [1]. We employ 3-layer ANN 

[9] with 30, 20, 10 neurons/layer with tanh(x) activation function. ANN has 4 standardly scaled [9] inputs: Pin
tot

lin
 

[mW], P1485lin [mW], Gtilt, λ [nm] and Gain [dB] or NF [dB] as output. The Gtilt parameter represents a generalized tilt 

over spectrum, and ordinary tilt over 84 channels is proportional to it; λ is a channel’s wavelength. We train ANNs 

using LBFGS optimizer [9] with an objective to minimize Mean Squared Error (MSE) over the train dataset, we track 

MSE evolution over validation dataset to decide when to stop training (early stopping method). We test ANNs over 

the test dataset for ROPA 1 and present the results on Fig.3a) for Gain and Fig.3d) for NF. We consider only realistic 

Gain>10 dB and NF<10 dB: and we get Gain Root MSE (RMSE)=0.17 dB, and NF RMSE=0.04 dB. 

3. Recalibration of ML models of Gain and Noise Figure and their adaptation to an arbitrary amplifier. 

The objective of recalibration learning is to find adjustments to ML models of Gain and NF, so they are applicable to 

other devices. We suppose that the performance of an arbitrary ROPA could be scaled towards the reference ROPA 

if additional controls (like VOA or ideal amplifiers) placed on input/output ports and pump of ROPA. We assume that 

by adjusting such controls we could mimic the performance of a reference ROPA, as if reference ROPA was in place, 

but with additional recalibrations. This would mean a ReCalibration (RC) of powers measured at input/output of 

ROPA and its pump by ΔPin
RC, ΔPout

RC, ΔP1485
RC respectively as: P1485

ref=P1485
trgt+ΔP1485

RC, Pin
tot-ref=Pin

tot-trgt+ΔPin
RC, 

Pout
tot-ref=Pout

tot-trgt+ΔPout
RC [dB], with suffix "ref" for reference device, and "trgt" for target device. Thus, recalibration 

learning means finding recalibration factors and applying them on ML model inputs/outputs accordingly. 

Let us consider recalibrated model of Gain, described in Fig.1a). The reference ANN takes as inputs powers read 

by reference device, so we shall provide as inputs the powers at a target device scaled to the reference (in linear 

domain): Pin
tot-ref

lin=Pin
tot-trgt

lin×ΔPin
RC

lin, P1485
ref

lin=P1485
trgt

lin×ΔP1485
RC

lin. Similarly, as reference ANN predicts Gain valid 

for reference device, ANN will predict Gainref=Gaintrgt+ΔGainRC, where ΔGainRC=ΔPout
RC-ΔPin

RC. Thus, the sought 

Gain of a target device will be defined as Gaintrgt=Gainref-ΔGainRC. Now, let us consider NF ML model recalibration, 

with mechanics described in Fig.1b). As the inputs for NF ANN are the same as for Gain ANN, we replicate the same 

transformation for inputs. When it comes to the output, we conclude that in linear domain NFtrgt
lin shall be calculated 

by the formula provided in Fig.1b) and then converted to dB. Such transformation requires knowledge of Gaintrgt, 

which is available when finding recalibration parameters, but is not available for prediction. So, we use an estimation 

of Gaintrgt by Gain ML model. Otherwise, one can approximate NFtrgt=NFref-ΔPin
RC, without knowledge of Gaintrgt

. 

To find recalibration parameters we employ the next framework: we get the reference ANN (Gain or NF) and we 

make measurements on a target device. We freeze weights and biases of ANN, and then we find ΔPinRC, ΔPoutRC, and 

ΔP1485RC values by minimizing MSE error on Gain or NF predictions on a target device, while using the recalibration 

model described above. It is more practical to find ΔPinRC, ΔGainRC, and ΔP1485RC as exactly these parameters are 

used by recalibration models. We employ LBFGS optimizer to find these recalibration parameters. Normally, they are 

 

 
Fig. 2 a) Setup for a ROPA characterization, b) spectral loadings for reference ROPA test, c) generic spectral loadings for target ROPA 2&3 test. 
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individual for Gain and NF recalibration models, but they can be made common via next technique: find ΔPin
RC using 

recalibration model for NF, then fix this ΔPin
RC for the recalibration of Gain and find ΔGainRC, and ΔP1485RC.  

4. Assessment of the recalibrated ML models of Gain and Noise Figure. 

We assess the search for individual and common recalibration parameters for Gain/NF using 1, 2 and 4 configurations 

taken from flat profile measurements of ROPA 2 and 3 (cf. Table 1). We have 240 and 210 configurations, each with 

84 Gain/NF points, for ROPA 2 and 3 respectively to test their recalibration parameters. Fig. 3 shows the outcome of 

this test for individual recalibration parameters found via 2 configurations (we remove them from the test). We provide 

Gain/NF prediction error as a function of known Gain/NF: blue points represent recalibration model and orange points 

represent direct application of reference ANNs; we identify Mean Absolute Error (MAE), MSE, and RMSE on 

recalibrated models. The divergence observed between orange and blue points attests to differences between devices. 

Table 1 sums up tests for individual/common recalibration over 1, 2 and 4 configurations via Gain/NF prediction 

MAE: just 2 configurations (2/960 ~ 0.21% of data needed to train ML model) with individual calibrations are enough 

to transfer reference ML models. For Gain predictions we get similar MAE of 0.12, 0.16, 0.16 dB for ROPA 1, 2 and 

3 respectively. As for NF we get MAE of 0.02, 0.09, 0.05 dB for ROPA 1, 2 and 3 respectively. These metrics are 

getting worse for Gain if to consider 1 configuration, but they are acceptable for NF. The common recalibration on 2 

configurations also delivers similar MAE both Gain and NF across ROPAs, a little worse than with individual option. 

All of those results confirm the initial assumption that just 3 recalibration parameters over input/output ROPA ports 

and pump power are enough to reliably transfer the ML model of Gain and NF from a reference ROPA to any ROPA. 

5. Conclusion 

In this study we proposed a simple and accurate method of ROPA ML models transfer based on physical assumptions 

using just 0.21% of data, needed to train ML model. This method is warranted to be studied further in a generic EDFA.  
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Fig. 3: ML model and its transfer analysis for Gain: a) ROPA 1 (ref), b) ROPA 2, c) ROPA 3; for NF: d) ROPA 1 (ref), e) ROPA 2, f) ROPA 3 

Table.1: The summary of recalibration learning application to different ROPAs. 

Gain and NF 

Recalibration 

Recalibration: Spectral Configurations Gain: MAE [dB] NF: MAE [dB] 

Count Pin
tot[dBm] P1485[dBm] ROPA 1 (ref) ROPA 2 ROPA 3 ROPA 1 (ref) ROPA 2 ROPA 3 

Individual 1 -15 6 0,12 0,35 0,38 0,02 0,11 0,06 

Individual 2 -15 [6, 12] 0,12 0,16 0,16 0,02 0,09 0,05 

Individual 4 [-15, -25] [6, 12] 0,12 0,13 0,14 0,02 0,10 0,04 

Common 1 -15 6 0,12 0,18 0,30 0,02 0,13 0,06 

Common 2 -15 [6, 12] 0,12 0,12 0,24 0,02 0,10 0,05 

Common 4 [-15, -25] [6, 12] 0,12 0,12 0,21 0,02 0,10 0,05 
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