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Abstract: This paper presents a high-throughput dataflow processing using all-to-all 
communication with eight FPGAs. We demonstrated a parallel radix sorting throughput of 37.2 
GB/s for 32-bit key range and 16-GiB data size. © 2024 The Author(s) 

 
1. Introduction 

In the data-centric era, it is important to retrieve and analyze multiple data to extract value simultaneously. In a parallel 
computer system, all-to-all communication performance among compute nodes is frequently performed. PC clusters 
using modern reconfigurable FPGAs (Field Programmable Gate Arrays) equipped with High Bandwidth Memory 2 
(HBM2) have received attention as a low-power computing platform. HBM2 has many memory channels, in contrast 
to a traditional DRAM. Inter-FPGA networks face a significant challenge in connecting many memory channels with 
all-to-all communications.  

We have developed OPTWEB, a network mechanism that enables dataflow processing with all-to-all 
communication between FPGAs equipped with HBM2s. All FPGAs are fully connected using fiber optics. The 
multiple memory controllers of each FPGA are then directly connected to each other to achieve highly efficient all-
to-all communication [1, 2]. In this study, we demonstrated a parallel radix sort speedup using dataflow processing 
with all-to-all communication. 

2. A Custom FPGA Cluster 

Figure 1 illustrates a block diagram of OPTWEB for an eight-FPGA with a fully connected network topology on an 
FPGA card [1]. Memory controllers (M#k) and network ports are provided, equal to the number of FPGAs, and 
connected by a distributed switch in the FPGA. After the distributed switches in all FPGAs fix their paths for an all-
to-all communication, static and dedicated paths from source memories to destination memories are established over 
the fully connected network. All 64 memory channels distributed in the eight FPGAs are directly connected to each 
other via the dedicated paths. For example, M#7 in FPGA #0 is directly connected to memory M#0 in FPGA #7, and 
so on. The fully connected network enables these dedicated memory-to-memory paths. OPTWEB dynamically 
switches the communication between the application logic and a memory and that between the application logic and 
a remote memory of a different FPGA by updating the changeover switch. The command sequencer manages this 
operation without congestion. 

3. Parallel Radix Sort 

We describe our design of a parallel radix sort on the FPGA cluster. Figure 2 shows a process flow for an X-bit radix 
sort that consists of X/c c-bit counting sorts, which sorts data based on the key type. Counting sort is a computationally 
minimal algorithm, and high throughput sorting performance can be expected on FPGAs with finite hardware 
resources. In the first step, a global sort, namely key exchange among the FPGAs using all-to-all communication. In 
subsequent steps, a local sort within the FPGA is repeated. Figure 3 shows the block diagram of the sorting kernel in 
each FPGA. It consists of a counting sort block and a transpose block, which are shared by global/local sort. Figure 4 
illustrates the behavior of the global sort using three FPGAs. Numbers from 0 to 35 indicate the initial sequence of 
data to be sorted. Three types of keys are assumed and indicated by color. Within the FPGAs, the data is arranged in 
order from the beginning of the memory space managed by each memory controller. First, the counting sorter sorts 
the keys by type. Second, all-to-all communication is performed on the results, and data with the same key is collected 
in each FPGA. Finally, the transposer arranges the data in order in the memory space handled by each memory 
controller. Transposition at the end of each sorting step provides a stable sort that maintains the order of the data. This 
series of data processing is executed in a single memory read/write operation as a dataflow processing. 
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4.  Evaluation 

The parallel radix sort circuit was implemented on an eight-node rack-server system, as shown in Figure 5 [3]. Each 
computing node using 1-U server has a CPU (Intel Xeon Gold 5215, 2.5 GHz) and a custom FPGA card, which has a 
custom FPGA (Intel Stratix10 MX2100) and eight embedded optical modules (EOMs). We used Intel Quartus Prime 
Pro version 19.4 to synthesize the FPGA circuit. The operating system was CentOS Linux v7.9.2009. The FPGAs are 
connected to each other with EOMs to a fully connected network using wavelength router technology. An optical 
transceiver chip in the EOM was fabricated using silicon photonics technology. The EOM has a bi-directional 100-
Gbps throughput, which consists of four 25-Gbps Si photonics transceivers within a 12×12-mm2 footprint. The EOM 
supports WDM in the C band, and couples to 12-core single-mode optical ribbon fiber. Eight network ports in each 
FPGA are connected to eight EOMs via electrical wires on the FPGA card. Wavelength routers can configure a fully 
connected network, using wavelength division multiplexing (WDM) technology to bundle multiple signals into a 
single optical fiber. A wavelength router and erbium-doped fiber amplifiers (EDFAs) are placed at the top of the rack. 
The optical equipment includes a WDM light source (Yokogawa AQ2200), and arrayed waveguide gratings (AWGs; 
NTT Electronics) for the wavelength router and (de)multiplexers. 

We used a single 8-GB HBM2 memory in the evaluation. The HBM2 memory has eight memory channels. Each 
memory channel consists of two pseudo channels to simultaneously perform reading and writing through a memory 
channel. Each pseudo channel has a 256-bit width and 200-MHz clock frequency. Although the memory bandwidth 
is 51.2 Gbps per memory channel and 409.6 Gbps at maximum, any two FPGAs are connected to each other with a 
50-Gbps link in our implementation, giving a 400-Gbps aggregate bandwidth per FPGA. The number of ALMs is not 
large enough to support 100-Gbps links and sorting kernels. 

The key data to be sorted were 32-bit length unsigned integers without a payload. Namely, the maximum key 
range X was 32 bits. The number of bits c to be sorted for each Counting Sort was set to 4. We measured the sorting 
throughput by varying the key ranges from 4 bits to 32 bits. We also measured the sorting throughput by varying the 
number of keys from 227 to 232. Namely, the key data size was from 0.5 GiB to 16 GiB (64 MiB to 2 GiB per FPGA). 
The key distribution was uniform, and the initial order was random. The keys were initially stored in HBM2 memories 
on the FPGAs and they were sorted to appropriate areas in the HBM2 memories on the FPGAs according to their key 
values. 

Figure 6 (a) shows the measured sorting throughput of the parallel radix sort as a function of the key range on an 
FC topology. The sorting throughput is defined as the total data size of keys divided by the sorting processing time. 
While the key range varies from 4 to 32 bits, the key length is always 32 bits. The sorting throughput was 215.1 GB/s 
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for the 4-bit key range and 37.2 GB/s for the 32-bit key range. Figure 4(b) shows the measured throughput of the 
parallel radix sort as a function of the key data size. In this case, the key range was constant, 32 bits. The sorting 
throughput is almost constant regardless of the data size.  

To the best of our knowledge, our parallel radix sort is the only one using many FPGAs with high-bandwidth 
memory networks. It is difficult to compare it with existing sorters in terms of architecture. Thus, we compared the 
levels of performance and support of multiple nodes of state-of-the-art sorters with CPUs, GPUs, and FPGAs, as listed 
in [4]. Two of them were distributed sorters with multiple CPU and GPU nodes, and the others were single-node 
sorters. Table 1 summarizes sorting throughputs per node. FPGA Bonsai is top-ranked with 5.814 GB/s/node. Ours is 
fourth-ranked with 4.646 GB/s/node and top-ranked within sorters with multi-node support. Using many FPGAs poses 
difficulties for both weak and strong scaling of sorters, because of the network-bandwidth bottleneck in accessing 
remote memories across multiple FPGAs. We optimized the sorting logic for OPTWEB to efficiently use the inter-
FPGA networks. We achieved a high throughput per node comparable to that of a hardware sorter for a single FPGA.  

5.  Summary 

We presented a parallel radix sort, which made the best use of all-to-all optical interconnection network on an eight-
FPGA cluster. We obtained a parallel radix sorting throughput of 37.2 GB/s for a 32-bit key range and 16-GiB data 
size on the FPGA cluster. 
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