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Abstract: We explore optical switching to extend network programmability to the physical layer. 
We present applications of our Layer-1 SDN for improving fabric resilience against hardware 
failures and saving network power and cost in Deep-Learning training.  © 2024 The Author(s) 

 
1. Introduction 
Enterprise and hyperscale datacenters are progressively built around workloads utilizing Artificial Intelligence and 
Machine Learning (AI/ML). The advent of Deep Learning has accelerated scaling of training compute, driving the 
required FLOPs to double approximately every 6 months, outpacing single GPU scaling rate by a factor of five [1]. 
To keep up with the need for FLOPs, scale-out systems are needed to create larger native GPU domains 
interconnected with high-speed links to keep them fully utilized. For example, the latest NVIDIA DGX SuperPOD 
reference architecture brings together 1,024 H100 GPUs and can scale to tens of thousands of GPUs. In the 
reference SuperPOD, the compute fabric comprises more than 2,000 cables in a rail optimized, two-level fat tree 
topology that extends to three-levels for larger GPU counts [2]. At this scale, the network is an integral part of the 
system and its characteristics reflect on overall system power, cost and availability.   
Optical Circuit Switches (OCSs) are introduced to respond to these challenges. An optically switched fabric offers 
physical layer reconfigurability and programmability, re-wiring the network and allocating physical connections on 
demand. The OCS fabric demarcates from the rigid physical infrastructure cabling used today that is considered 
fixed after deployment, and enables physical topology adaptation at runtime. This capability substantially extends 
today’s software-defined network infrastructures that are programmable down to Layer 2 (L2), adding physical layer 
connections as a programmable resource. We introduced a workflow that extends the network’s software-defined 
capabilities to Layer 1 (L1) and demonstrated its operation with the InfiniBand (IB) Subnet Manager (SM) [3].  
Introducing programmability to L1 facilitates a multitude of new network operations but also comes with new 
implications regarding integration of the new functionality to the software-defined network infrastructure. This 
paper describes two applications of the L1 programmable dataplane: 1. fabric resilience against hardware failures 
and 2. training of Deep Learning (DL) models. Each application is presented separately for the sake of clarity, but 
the functionalities involved in each concept could be combined in a single architecture. 

2.  Resilience against hardware failures 

Multi-node applications rely heavily on large networks and are highly susceptible to crashing when networks fail. In 
the case of large systems, switches or transceivers can cause a failure from every 3 to every 120 hours [4], resulting 
in system impact being measured in hours. Failures can result in downtime causing lost revenues due to the 
unavailability of the system until the next maintenance event. The common policy of rolling back to the latest 
checkpoint exacerbates the loss as it discards all computations performed after the checkpoint. 

Recovery of failures in networks of large systems currently focuses on adapting the routing configuration to exclude 
the failed paths where possible, since there is little or no ability to change the actual physical connectivity in real 
time during a failure. These approaches come with two major limitations: First, they can be used only when 
alternative paths exist: some types of failures cannot be mitigated with this approach, e.g. failures on the leaf 
switches that result in disconnecting the servers from the network. Second, this approach cannot recover the full 
performance of the cluster in real time since the use of alternative paths often results in oversubscription and hence 
reduced performance.  Multihoming can resolve this by replicating (part of) the network, e.g. connecting the server 
to two switches. On the downside, it requires more hardware and increases deployment and operating costs. 
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We leverage the L1 programmable dataplane to provide real-time recovery in an efficient, scalable, automated and 
software-defined manner with minimal addition of redundant hardware. We focus on the network as a major point of 
failure by using optical technology to dynamically heal the network connections and make failure recovery at full 
capacity an automated process. The hardware resilience solution relies on the addition of OCSs between the 
switching layers (hosts-to-leaves, leaves-to-spines, spines-to-cores), as depicted in Figure 1(left), that dynamically 
rewire the network on demand. To offer resilience against switch failures, redundant network switches are added to 
the network. The redundant switches are connected to available ports of the OCSs, similarly to the regular switches. 
When a device failure is detected, the corresponding optical switches are properly configured to disconnect it from 
the network and replace it with a redundant unit. The number of redundant switches defines a customizable level of 
resilience in the network, i.e., the number of failures that can be recovered simultaneously, which can vary 
depending on the system requirements. 

The OCSs are controlled by a custom control plane software called the Optical Fabric Manager (OFM) that serves as 
an SDN stack extension for physical layer resources. The OFM calculates the target topology of the cluster, enforces 
the configuration to the physical layer devices and notifies the L2 SDN controller (IB Subnet Manager) of the 
changes. This enablement facilitates automatic failover switching to the redundant equipment as well as additional 
functionalities, such as predictive maintenance and scheduled rollout of software and hardware upgrades. 

Fig. 1. Left: Resilience architecture and experimental setup. Right: Bandwidth recovery demonstration with 
NCCL all-reduce. Telemetry data of Tx (yellow) and Rx (purple) bandwidth over time.  

We have demonstrated the application of hardware resilience with our L1 programmable dataplane in a small-scale DL 
testbed. The setup consists of 4 DGX A100 servers and 14 IB Quantum switches, connected as 8 Leaves, 4 Spines, 1 
redundant Leaf (RL) and 1 redundant Spine (RS). The servers and switches were populated with 114 CWDM 200 Gb/s 
transceivers. A single commercial OCS was partitioned to serve both server-to-leaf and leaf-to-spine connections.  

We emulate IB switch failures and trigger the OFM to initiate the failure mitigation process. Figure 1(right) shows the 
results of our tests with NCCL [5] collective communications library. The telemetry measurements show bandwidth 
of all IB interfaces of a DGX server over time, for all-reduce benchmark. Leaf failures would normally result in an 
application crash and the IB interface going offline until the failure is fixed. In case of spine failures the application 
would not crash given the availability of alternative paths, but the system would work at reduced capacity. When our 
resilience system is enabled, the full performance of the cluster is restored within a few seconds. We have tested the 
setup with UCX [6] and NCCL microbenchmarks and real-world applications (MLPerf BERT, ResNet-50 and 
NeMo Megatron) and achieved the same performance. In our experiments we used the IB network, but the same 
concepts can be applied to other fabrics such as Ethernet or NVLink.   

3. Deep Neural Network training 

The second application of our L1 programmable data plane is DL training clusters. We focus on prominent 
examples of DL as manifested by large language models (LLMs) and deep learning recommendation systems 
(DLRMs), with exceptionally promising applications and transformational impact to society.  

A multi-level fat tree (FT) network topology based on electrical packet switches can be used to interconnect all the 
nodes in the cluster at full bisection bandwidth. This simplifies placement of jobs and routing but comes at a steep 
price. The energy consumption and cost of the FT network account for a considerable portion of the total system 
power and cost, which is increasing with every speed upgrade. It is possible to replace the multi-level FT with a 
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leaner network fabric considering the communication needs of the application. Firstly, connections across jobs are 
not needed; in fact isolating jobs is advantageous as it mitigates cross-job interference and improves security. In 
addition, each DL job follows well-defined traffic patterns implemented through communication collectives, and 
therefore does not need all the bisection at all levels. We propose a network fabric that replaces higher layers of the 
FT topology with an OCS layer. We show that LLM and DLRM jobs can be served with this L1 programmable data 
plane without impacting cluster efficiency, yet saving network latency, energy (>50%) and cost (>30%). 

The underlying principle leverages the programmable data plane to adjust the network topology according to the 
expected communication pattern for each job [7-8]. Our approach assumes knowledge of basic information on the 
jobs arriving to the cluster, such as the in-network collectives and parallelization approach followed. We have 
developed a resource management tool that places the job across GPU, allocates network resources and assigns them 
to circuits through the OCS implementing the target network topology. For each job and allocation of ranks, the 
programmable data plane implements a suitable topology (e.g. tori and full graphs) that provides full bisection 
bandwidth for the expected traffic pattern. We have developed specific rules and heuristics for resource management 
targeting LLM and DLRM jobs. For the current work, we rely on DGX servers with multiple GPUs interconnected 
through NVLink. The DGX servers are connected to the programmable data plane through InfiniBand DPUs.  

Flattening the network with the L1 programmable data plane does not affect per-job bandwidth compared to a FT 
topology, as we leverage the known communication patterns. We further investigate the effect of the simplified data 
plane on the utilization of the system, to assess whether our strategies may result in stranded resources. We 
developed a network solver that takes as input a queue of DL training jobs and allocates resources for their 
placement while creating the required network topologies. We compare utilization over time for a system employing 
the programable dataplane against a system with an ideal FT.  We show that the system utilization remains well 
within 1% of the FT based system for DLRMs, LLMs as well as for their mix.    

 
Fig. 2. System utilization for different mixes of jobs  

3.  Conclusion 

Photonic switching extends SDN programmability to the physical layer. The programmable data plane enables new 
functionalities to sustain growth in scale-out systems. We demonstrated real-time failover to redundant IB switches, 
successfully restoring the full performance of the cluster to improve availability. We also presented a flat 
architecture for LLM and DLRM training that saves network power and cost without compromising bandwidth or 
cluster utilization. As scale is capped by the power available on-site, improving energy efficiency is paramount. 
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