Dual-band polarization beam splitter based on cascaded multimode anti-symmetric apodized Bragg gratings

Guanglian Cheng¹, Qiyuan Yi¹, Zengfan Shen¹, Zhiwei Yan¹, Qiyuan Li¹, Xinzhe Xiong¹, Fanglu Xu¹, Shuang Zheng¹, Shuai Cui¹, Yuan Yu¹, Yi Zou, Chaotan Sima¹ and Li Shen^{1*}

¹Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China;
²The School of Information Science and Technology, ShanghaiTech University, Shanghai, China;
*Email: lishen@hust.edu.cn

Abstract: We design and demonstrate a dual-band polarization beam splitter with insertion losses of 0.5/1.2dB and 3.1/1.1dB for TE/TM-polarizations at 1550 and 2000nm, respectively. The measured bandwidths for extinction ratio >20dB are ~115/100nm for 1.55/2µm waveband.

1. Introduction

Polarization beam splitters (PBSs) have been widely developed for on-chip polarization handling or polarization division multiplexing. Various on-chip PBSs have been developed based on different structures, including multimode interference (MMI) couplers [1], directional couplers (DCs) [2], Bragg grating [3], subwavelength gratings (SWGs) [4] and so on. Among these, PBSs based on Bragg grating or SWG structure exhibit large operation bandwidth (BW), exceeding 200nm for extinction ratio (ER) >20dB. It's worth noting that most of the reported PBSs are designed for the conventional O to L communication bands, which is currently the primary window for optical fiber communications. Recently, the 2 μ m waveband has emerged as a promising candidate for optical communication applications, thanks to the development of thulium-doped fiber amplifiers [5] and integrated light modulators [6]. To fully exploit the available spectral resources in both traditional communication and the 2 μ m waveband, integrated devices that are capable of dual-band operation are required [7,8].

In this paper, we propose and demonstrate a dual-band PBS that can be operated at both 1.55 μ m and 2 μ m wavebands, for the first time. We achieve the dual-band PBS function by cascading a dual-band TE₀/TE₁ mode (de)multiplexer and two multimode anti-symmetric apodized Bragg gratings (MASABGs) [9]. Theoretically, the designed device has insertion losses (ILs) as low as 0.1/0.4dB at 1550/2000nm. The theoretical operating BWs at 1.55 μ m and 2 μ m wavebands are up to 150nm and 180nm, respectively. The measured spectra of the fabricated device also exhibit wide BWs, and the BWs for ER >20 and >25dB are ~115nm and 105nm for the 1.55 μ m waveband, ~100nm and ~75nm for the 2 μ m waveband, respectively. In addition, the fabricated device shows ILs of 0.5/1.2dB at 1550nm and 3.1/1.1dB at 2000nm for TE/TM polarizations.

2. Design and simulation

Fig. 1. (a) Schematic diagram of the proposed PBS with some key parameters labeled. The black dashed lines show the three parts of the device, i.e. a dual-band TE_0/TE_1 mode (de)multiplexer and two MASABGs. The yellow arrows show the propagation of the TE polarization, and the purple arrows represent the propagation of the TM polarization. (b) The proposed MASABG with some key parameters labeled. All the grating duty cycles are set to be 0.5. ABG: apodized Bragg grating, UBG: uniform Bragg grating.

Figure 1 (a) shows the schematic diagram of the proposed dual-band PBS. It is designed on the conventional 220-nm SOI platform with top silica cladding. The fabrication process for this device involves only one etching step. The whole device is composed of three parts, a dual-band TE_0/TE_1 mode (de)multiplexer, and two MASABGs. The dual-band TE_0/TE_1 mode

(de)multiplexer is specifically designed to operate in both the 1.55 μ m and 2 μ m wavebands, whereas MASABG I and II are designed to convert the forward TE₀ mode into backward TE₁ mode for 1.55 μ m waveband and 2 μ m waveband, respectively. Here, the detailed parameters of MASABGs are marked in Fig. 1 (b). When 1.55 μ m or 2 μ m waveband TE₀ light is launched in the input port, the forward TE₀ mode is first converted into backward TE₁ mode through MASABG I or II, respectively. Subsequently, the reflected TE₁ mode is evolved into the TE₀ mode in waveguide B through the dual-band mode (de)multiplexer and finally output at the Drop-port. However, for the input TM polarization, phase matching conditions are not satisfied in both the 1.55 μ m and 2 μ m wavebands. Thus, the injected TM₀ mode will pass through the device with minimal loss and eventually output at the Thru-port. Consequently, this setup allows for the effective implementation of a dual-band PBS function.

To evaluate the performance of the proposed device, the 3D-FDTD method is used and the profiles of light propagation for TE₀/TM₀ modes at wavelengths of 1550nm and 2000nm are illustrated in Fig. 2 (a). It can be seen that when the 1.55 μ m waveband TE₀ mode is injected, it is first converted into the backward TE₁ mode by MASABG I, and then demultiplexed to the TE₀ mode at the Drop-port through the dual-band TE₀/TE₁ mode (de)multiplexer. For the 2 μ m waveband TE₀ mode, it first passes through the MASABG I with negligible loss. Subsequently, this forward TE₀ mode is converted into backward TE₁ mode through the MASABG II. Finally, the backward TE₁ mode is demultiplexed to the TE₀ mode of the 1.55 μ m/2 μ m wavebands will pass through MASABG I and II and output at the Drop-port. On the other hand, the input TM₀ modes of the 1.55 μ m/2 μ m wavebands will pass through MASABG I and II and output at the Thru-port as the Bragg reflection condition doesn't satisfy. Figs. 2 (b)-(e) show the transmission spectrums calculated for the TE₀/TM₀ modes in the 1.55 μ m and 2 μ m wavebands. From these figures, the device exhibits excellent performance with ILs as low as 0.1dB and 0.4dB at around 1500nm and 2000nm, respectively. In addition, the calculated BWs for ER >20dB and >25dB are about 140nm and 130nm for the 1.55 μ m waveband, 150nm and 130nm for the 2 μ m waveband. It is worth noting that the operational BWs and ERs of our proposed device can be further improved by increasing the number and width of rectangular holes but will ultimately be limited by the operating BW of the dual-band TE₀/TE₁ mode (de)multiplexer.

Fig. 2 (a) Light propagation profile for TE_0/TM_0 modes at wavelength of 1550/2000nm. Calculated transmission spectrums when (b) 1.55 μ m waveband TE₀ mode, (c) 1.55 μ m waveband TM₀ mode, (d) 2 μ m waveband TE₀ mode and (e) 2 μ m waveband TM₀ mode is launched.

3. Fabrication and results

The designed dual-band PBS is fabricated on an SOI wafer with a 220-nm thick top silicon layer and a 2µm thick buried dioxide layer. The device layout is patterned by 100 keV electron beam lithography (Vistec EBPG 5000plus ES). A singlestep etching process is used to define all devices, followed by plasma-enhanced chemical vapor deposition (PECVD) of a 1µm thick top silica cladding for protection. Fully etched TE/TM-type GCs with center wavelengths of around 1550nm and 2000nm are also utilized to keep all devices at the same etch depth for easy fabrication. Since our proposed PBS can be operated at both the 1.55µm and 2µm wavebands, four set devices are fabricated with the same PBS but different GCs to characterize the performance. TE/TM-type GCs of 1.55/2µm wavebands are attached to both ends of the PBS to measure the transmission spectrums when TE/TM light is launched, as shown in Fig. 3 (a). Fig. 3 (b) shows the scanning electron microscope image for MASABG I and II. Figs. 3 (c) and (d) show the enlarged views of UBG in MASABG I and II, respectively. Straight single-mode waveguides are also fabricated on the same chip for normalization. The experimental setup consists of two laser sources: a 1.55µm waveband amplified spontaneous emission (ASE) source with a wavelength range covering from 1500nm to 1620nm and a home-built 2µm waveband ASE source with a wavelength range covering from 1960nm to 2060nm. The vertical coupling test system (OMTOOLS FA-H201M-N80) is used to input and output light to the device to be tested, where the input port is connected to the ASE light source and the output port is connected to the optical spectrum analyzer (OSA, Yokogawa AQ6375B). Figs. 3 (e) and (f) show the measured ILs and ERs of the fabricated PBS for TE and TM polarization at the 1.55µm waveband, whereas Figs. 3 (g) and (h) indicate the recorded ILs and ERs of the fabricated PBS for TE and TM polarization at the 2µm waveband. It can be seen that the ERs of TE and TM polarization at 1550nm and 2000nm are >30dB. For the 1.55 μ m waveband, the measured BWs for ER >20dB and >25dB are ~115nm and ~105nm, respectively, whereas the measured BWs for ER >20dB and >25dB are ~100nm and ~75nm, respectively, for the 2 μ m waveband. Moreover, the recorded ILs are 0.5/1.2dB at 1550nm and 3.1/1.1dB at 2000nm for TE/TM polarizations. The measured insertion losses are slightly higher than the simulated values, which can be attributed to waveguide sidewall roughness and fabrication errors.

Fig. 3 (a) Microscopic image of fabricated four set devices for measurement. (b) Scanning electron microscope image for MASABG I and II. The enlarged views of UBG in MASABG (c) I and (d) II. Measured transmission spectrum for (e) 1.55µm waveband TE polarization, (f) 1.55µm waveband TM polarization, (g) 2µm waveband TE polarization and (h) 2µm waveband TM polarization.

4. Conclusion

In conclusion, we have designed and demonstrated a novel dual-band PBS capable of operating in both the 1.55 μ m and 2 μ m wavebands. The device is fabricated on the standard 220-nm SOI platform with a straightforward single-etch fabrication process. The designed device has a length of ~60 μ m. Simulated results show that the ILs are as low as 0.1dB and 0.4dB at around 1550nm and 2000nm, respectively, and the ERs are >20dB in a broadband wavelength range of 1475-1615nm and 1920-2070nm. For the fabricated dual-band PBS, the measured ILs are 0.5/1.2dB at 1550nm and 3.1/1.1dB at 2000nm for TE/TM polarizations, and the measured BWs for ER >20dB and >25dB are ~115nm and ~105nm for the 1.55 μ m waveband, ~100nm and 75nm for the 2 μ m waveband, respectively.

5. Acknowledgements

This work was supported in part by the National Key R&D Program of China (2022YFB2803600), in part by Natural Science Foundation of China (NSFC) (62175080).

6. References

[1] A. Herrero-Bermello, et al., "Experimental demonstration of metamaterial anisotropy engineering for broadband on-chip polarization beam splitting," Opt. Express, 28(11): 16385-16393 (2020).

[2] D. Dai, et al., "Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler," Opt. Lett., 36(13): 2590-2592 (2011).

[3] G. Cheng et al., "Silicon multimode anti-symmetric apodized Bragg gratings for ultra-broadband high-extinction-ratio polarization beam splitter," J. Lightwave Technol., in press (2023).

[4] H. Xu, et al., "Meta-Structured Silicon Nanophotonic Polarization Beam Splitter with an Optical Bandwidth of 415 nm," Laser Photon. Rev. 17, 2200550 (2023).

[5] Z. Li, et al., "Thulium-doped fiber amplifier for optical communications at 2 μm," Opt. Express, 21(8): 9289-9297 (2013).

[6] W. Cao, et al., "High-speed silicon modulators for the 2 µm wavelength band," Optica, 5(9): 1055-1062 (2018).

[7] Q. Yi, et al., "Silicon MMI-based power splitter for multi-band operation at the 1.55 and 2µm wave bands," Opt. Lett., 48(5): 1335-1338 (2023).

[8] M. Rouifed, et al., "Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55 µm and 2 µm," Opt. Express, 25(10): 10893-10900 (2017).

[9] G. Cheng, et al., "Ultrahigh-extinction-ratio and broadband all-silicon TM-pass Polarizer by employing multimode anti-symmetric apodized Bragg grating," APL Photonics, 8: 046112 (2023).