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1. Introduction
Estimating the quality of transmission (QoT) of unestablished lightpaths has been an active field of research
in recent years [1]. Contrasting with the common practice of estimating QoT based on analytical formulas and
applying margins, new approaches leverage advances in network operation to improve QoT estimates based on
the telemetry of installed devices. Most recent QoT estimation algorithms, based on machine learning, can be
divided into two main classes. Class-one algorithms use black-box-like techniques, such as neural networks, which
preclude analytical formulas for channel modeling [2]. Class-two algorithms partially rely on analytical formulas,
optimizing parameters by the stochastic gradient descent (SGD) algorithm.

Representing the first class, Ibrahimi et al. [3] estimate the generalized signal-to-noise ratio (GSNR) distribu-
tion of unestablished lightpaths using regression. Morette et al. [4] and Yang et al. [5] exploit the input refinement
method to improve SNR prediction in single- and multi-band systems, respectively. Dı́az-Montiel et al. [6] im-
prove QoT accuracy up to 3 dB using Mininet-Optical with optical performance monitoring nodes at periodic
locations. Mahajan et al. [7] employ support vector machines (SVMs) to reduce to nearly 1 dB the required
GSNR margins. Kruse et al. [8] implement agnostic QoT estimation with long short-term memory (LSTM) neu-
ral networks, obtaining 1.1 dB improvement in established lightpaths. Amirabadi et al. [9] compare deep neural
network (DNN) regressors with other well-known ML algorithms for GSNR estimation. Ayoub et al. [10] extract
insights and inspect misclassifications of extreme gradient boosting for supervised binary classification of bit error
rate acceptability. Müller et al. [11] implements a path computation element by using gradient boosting trained
with enhanced Gaussian noise (EGN) model data. As a second-class representative, Seve et al. [2] propose a QoT
estimation scheme using a gradient descent algorithm trained with analytical data.

This paper proposes a QoT algorithm that fits in between classes one and two. We consider each link between
ROADMs as an element that impairs the SNR1, aggregating the contribution of amplified spontaneous emis-
sion (ASE) noise from amplifiers and the nonlinear interference generated in fibers. Unlike the work of Seve et
al. [2], in which imperfect noise figure and amplifier output powers are estimated using a gradient descent tech-
nique applied to the Gaussian-noise model equations, we solely rely on transponder SNR telemetry to optimize
equivalent link SNRs, where a link is an abstraction that interconnects two ROADMs. The main feature of our
approach is to accomplish network-wide SNR estimation, in which the gradients calculated for an established
lightpath are transferred to neighboring channels. When applied to several source-destination pairs, this approach
collectively optimizes the estimation process on a network-wide scale.
2. Proposed Framework
We consider an optical network topology with r ROADMs Rr = {1,2, · · · ,r} and links L ∈ {{a,b}|a,b ∈
Rr

2 and a ̸= b} interconnecting the ROADMs. The framework is based on an optical network digital twin
(NDTON) [12, 13], which maintains a digital database of lightpath SNR estimates. Eventually, the lightpath SNRs
recorded in the NDT will be different from the SNRs retrieved by telemetry from the real network, creating an
error signal that is fed into the SGD algorithm. The algorithm is then repeated until convergence is reached. As
shown in Fig. 1a, the QoT estimation workflow starts by creating a database with experimental and synthetic SNR
values. The experimental SNRs are read from the physical network, and the synthetic SNRs are loaded from the
NDTON. The NDTON initial guesses are generated by applying the GN model considering full link spectral load-
ing [14]. The NDTON is subsequently converted into a simpler digital twin (NDTSGD), where the cascaded spans

1We denote SNR as the optical GSNR computed assuming an optical noise bandwidth equal to the channel bandwidth.
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Fig. 1. a) Proposed QoT estimation using a simplified network digital twin (NDTSGD) optimized via SGD. After NDTSGD

training, we estimate the desired SNR{d}
c of ligthpath d traversing the set of links L{d}

c . b) Example of SNR estimation of a
simple 4-node network. Based on the lightpath 1 (light brown) and lightpath 2 (green), we use the SGD algorithm to estimate

SNR{3}
3 of an unestablished lightpath 3 (black dashed line) using optimized
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between two neighboring ROADMs are replaced by only one equivalent weighted edge with per-channel SNR
given by

{a,b}
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n=0

1
{a,b}
SNR{ase}

n,c

+
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, (1)

in which Ns is the number of spans between two neighboring ROADMs a and b, and
{a,b}
SNR{ase}

n,c and
{a,b}
SNR{nli}

n,c are,
respectively, the SNRs related to the ASE noise and nonlinear interference, for each span n and channel index c of
{a,b}. In the model, each span is composed of a segment of fiber followed by an amplifier. Index 0 accounts for
the booster, where no nonlinear distortion is added.

After computing the equivalent SNRs of all links and channels, we can fit the NDTSGD to the practical network.
Using the experimental data (i.e., the SNRs available on transponders), we update the equivalent SNRs of the
NDTSGD using the SGD algorithm

{a,b}
SNR{eq}

c+s [k+1] =
{a,b}
SNR{eq}

c+s [k]−η∇J{d}
c+s[k], (2)

where k is the training index, η is the learning rate and ∇ is the gradient operator. Note that gradient updating is
applied not only to the central channel c, but is transferred to neighboring channels c+ s ∈ [c−∆c, · · · ,c+∆c],
where ∆c is the number of neighboring channels used during training.

The rationale behind this feature is that neighboring channels should yield equivalent performance. The
quadratic cost function J{d}

c+s[k] of the (c+ s)-th channel adjacent to lightpath d is given by

J{d}
c+s[k] =

1
2

(
SNR{d}

c+s[k]−SNR{d}
c

)2
, (3) SNR{d}

c+s[k] =
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c+s

1
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SNR{eq}

c+s [k]


−1

, (4)

in which SNR{d}
c is read from the optical network (i.e., ground truth) and SNR{d}

c+s[k] is computed in the NDTSGD,
and L{d}

c = L{d}
c+s ⊂ L is the set of links traversed by ligthpath d.

Solving the gradient derivatives of (2) with respect to (3) and (4), yields

{a,b}
SNR{eq}

c+s [k+1] =
{a,b}
SNR{eq}

c+s [k]−ηe{d}
c+s[k]

 SNR{d}
c+s[k]

{a,b}
SNR{eq}

c+s [k]


2

, (5)

where e{d}
c+s[k] = SNR{d}

c+s[k]−SNR{d}
c is the SNR error.

Once the NDTSGD is trained, the SNR of an unestablished lightpath d (SNR{d}
c ) can be readily estimated, given

as input the set of traversed links L{d}
c . The scheme is illustrated for a four-node network in Fig. 1b, in which there

are two established lightpaths (1 and 2) and the QoT of a third unestablished lightpath (3) arriving in node 4 is
estimated.
3. Results
Simulations consider GNet and NSFNet [15] optical networks with 4.8-THz optical wavelength band (C-band),
and 12.5-GHz grid. Demands are uniformly distributed in the network, with bandwidth uniformly distributed be-
tween 1 to 4 frequency slots (FSs), resulting in a symbol rate of 10 GBaud × FS. Transponders operate with
polarization multiplexing and root-raised cosine shaping filter with α = 0.15. Routing and wavelength assign-
ment are performed with Dijkstra and first-fit algorithms, respectively. Route-and-select (R&S) reconfigurable
add-drop multiplexers (ROADMs) are equipped with a per-channel power control loop based on optical channel
monitors (OCMs) and wavelength selective switches (WSSs), ensuring a −6-dBm launch power per slot (equiv-
alent to 0-dBm launch power for a 50-GHz FS). We assume 80-km spans with 0.2-dB/km attenuation, except for
the last one, which ranges between 50 km and 120 km, to achieve the desired total span length. The idealized
NDTON is simulated considering uniform inline amplifier (ILA) gains and noise figures (NFs) equal to 16 dB
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Fig. 2. a) Simulation results and probability distribution of the estimation errors before (green bars) and after training (orange
bars), with ∆c = 25. b) GNet, c) NSFNet.

and 5.5 dB, respectively. To emulate real network imperfections, the experimental data set is generated consid-
ering inline amplifiers with wavelength-dependent gain. To create wavelength dependency, the ILA gains g(λ1),
g(λn), g(λNch)∼ U {14,16} dB, in which n is randomly chosen in the interval (1,Nch). The in-between gains are
quadratically interpolated, and white Gaussian noise (N {0,0.0001} dB) is added to each gain. The noise figures
(NFs) are also a function of the gains, i.e., NF(λn) = [5.5+16−g(λn)] dB, n ∈ [1, · · · ,Nch].

The learning rate and the number of training epochs were chosen large enough to avoid underfitting. For each in-
vestigated topology (GNet and NSFNet), 10% of randomly selected services were reserved for inference. Adapted
10-fold cross-validation was employed to verify the proposed approach’s robustness over different training sam-
ples. In this adaptation, during each round of cross-validation, the training and validation root mean squared error
(RMSE) were calculated for every training epoch, and the corresponding system optimization was recorded. Once
the last training epoch was computed, we chose the system that had the lowest validation RMSE for inference in
order to prevent overfitting. This procedure was repeated 10 times, once per round. We stored the SNR estima-
tion errors to compute the probability distribution, mean, and standard deviation (depicted in Fig.2.a)), with and
without training, at the end of the process. Results were obtained as a function of neighboring channels (∆c).

Results are summarized in Fig. 2.a). Before training, resorting only to the GN model with ideal parameters, the
mean estimation error for the NSFNet is significantly higher than for the GNet, owing to its longer link lengths.
After training, even with ∆c = 10, the proposed QoT estimation is able to shift the mean estimation error of both
topologies to approximately 0 dB. For larger ∆c, up to 40 wavelengths, we observe a decrease in the error standard
deviation. The shape of the error distribution is depicted in Figs. 2.b) and c), for the GNet and NSFNet before
(green bars) and after (orange bars) training, for ∆c = 25. Both figures evidence a clear reduction in the mean
and standard deviation for the error, evidencing the algorithm’s ability to perform accurate QoT in the presence of
severe imperfections.
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