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Abstract: This work presents a novel machine learning-based dynamic capacity allocation scheme 

for efficient bandwidth provisioning of optical links. It offers an average hourly capacity saving of 

over 75% compared to traditional static capacity allocation mechanisms. © 2024 The Author(s) 

1. Introduction 

The large number and variety of emerging online applications, along with the resulting increase of user- and machine-

generated traffic, lead to a high necessity for autonomous optical networks to support greater dynamics and flexibility 

in network resource allocation [1]. In traditional bandwidth allocation scenarios, the provisioned port capacity remains 

constant over the entire link operation lifecycle, meaning that a huge portion of the available throughput remains 

unused at all times (Fig. 1). As opposed to this, the dynamic link-capacity adjustment offers a higher flexibility in the 

network resource allocation, allowing for several benefits, such as: an enhanced network operation efficiency by 

maximizing the utilization of available network resources; higher bandwidth provisioning on demand; and a reduction 

of energy consumption costs of the optical network, among others. A promising way to accomplish the task of 

autonomous and dynamic link-capacity allocation is by means of efficient forecasting of traffic behavior [2,3], related 

to its intensity, variability, and burstiness over time [4]. In this regard, a few machine learning (ML) algorithms for 

network traffic prediction have been previously proposed [5-7]. One common aspect peculiar to all these works is that 

the investigated traffic is often synthetic in nature [6,8], in some cases with very low or missing burstiness, lack of 

traffic peaks and outliers specific to real traffic flows. Moreover, even with collected real traffic samples, these are 

typically aggregated at 1h intervals or longer, with the task being to predict the mean traffic load in the next hour [5,7]. 

Besides the resulting smoothening of the aggregated traffic envelope, the prediction of mean traffic does not suit the 

task of capacity allocation, since the provisioned bandwidth has to fit the traffic peaks as well. 

To address these limitations, we present a novel link-capacity adjustment scheme using the so-called dynamic 

capacity margin allocation (DCMA) that relies on traffic forecasting using LSTM-NNs. The technique adds dynamic 

safety margins based on the predicted variability of the traffic flows. Secondly, we show how this approach minimizes 

over-provisioning of real, fine-granular and bursty traffic flows, and quantify the resulting capacity gains. 

2. Traffic Forecasting-based Adaptive Link-Capacity Adjustment 

While network traffic is to a larger extent predictable when it comes to its periodicity and seasonality [9], forecasting 

its precise behavior at fine time granularities, is a challenge. Moreover, taking into account the uncertainty of its 

prediction (which primarily depends on the underlying traffic burstiness), it becomes utterly important to consider the 

traffic’s short-term variability in order to allocate enough capacity to minimize the undesired over-provisioning, while 

simultaneously preventing under-provisioning. The traffic forecasting-based capacity adjustment schemes presented 

in the literature, sometimes consider a static safety margin to mitigate the risk of under-provisioning [8]. However, 

this approach eventually leads to suboptimal performance, since the variability and burstiness of traffic flows change 

quite significantly over time [4], and a traffic outlier, as we also show in the following, will certainly remain under-

provisioned. Hence, a flexible, i.e., dynamic capacity margin allocation has more potential to solve this limitation. The 

performance of such an adaptive scheme depends on a couple of factors and parameters, presented in Fig. 2. In this 

work, we take these evaluation factors and metrics into account to present a concrete use-case of adaptive link-capacity 

adjustment. An important detail worth noting is that since the allocated capacity is set up step-wise and is fixed within 
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Fig. 1. Traditional static vs. dynamic capacity allocation schemes. Notice the total amount of unutilized 

bandwidth resources over a period of one week on one of Fraunhofer HHI’s optical enterprise links. 
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the allocation cycle/period, TC (Fig. 2), and is not following the traffic envelope, a certain amount of over-provisioning 

will always be present. 

3. Feature Engineering and Traffic Prediction 

In order to schedule and effectively allocate the link-capacity capable to support the upcoming traffic flows, the future 

traffic behavior has to be predicted based on its past and current values. As such, the traffic forecasting represents the 

first phase (P1) of the capacity adjustment cycle followed by the dynamic margin allocation (P2) to compensate for 

the prediction under-estimates. Next, a new capacity level is selected and scheduled for the next cycle (P3), and 

eventually set at the end of the current cycle (P4). To choose the most feasible capacity adjustment period, TC, which 

directly depends on the prediction frequency, a few factors have to be considered, such as the amount of total available 

measured traffic data, and the fact that longer TC results in higher over-provisioning (Fig. 2). Given these 

considerations, a capacity adjustment period of TC = 1h was one of the most feasible in terms of the underlying over-

provisioning (∑ 𝐶(𝑡) − 𝑅(𝑡)𝑡∈𝑇𝑐
) and mean capacity utilization (∑ 𝑅(𝑡)/𝐶(𝑡)𝑡∈𝑇𝑐

). 

The traffic prediction is carried out on a real traffic data set (Fig. 3) collected from a local Fraunhofer HHI’s optical 

P2P enterprise interface consisting of data rate variation over time, R(t). The collected traffic traces represent business 

customer traffic sampled at intervals of about 3 min, measured in Mbit/s (Fig. 3) and labelled with a timestamp, 

resulting in 6-weeks’ worth of traffic, i.e., 20160 samples overall. The dataset was split into training (4 weeks), 

validation (1 week), and test (1 week) subsets, respectively. In order to schedule the capacity for 1h ahead, the max 

traffic rate within each hour has to be accurately predicted. However, forecasting the future maxima based solely on 

the previous ones, when the traffic variance is large, is a highly challenging task. Therefore, to account for the high 

traffic burstiness, it is also essential to predict the future traffic variability. To accomplish this task, the traffic is 

decomposed into two parallel feature series of Rmax and δmax representing the hourly maximum traffic rate and hourly 

maximum difference between the consecutive traffic samples, calculated for each time window of 1h using the original 

3 min-granular (20/hour) traffic samples. Two similar LSTM-NNs are then trained in parallel on these two feature 

subsets, followed by the actual �̃�𝑚𝑎𝑥(𝑡𝑖+1) and 𝛿𝑚𝑎𝑥(𝑡𝑖+1) predictions (Fig. 3). Based on these forecasted values, the 

next hour capacity, 𝐶(𝑡𝑖+1) is computed applying the equation presented in Fig. 3. Worth noting is that the two LSTMs 

have one hidden layer and one output, and are trained using 48 consecutive 1h-maxima fed into its input, while 

applying a sliding window over the training set. Also, a capacity adjustment-step granularity of ΔC = 50 Mbit/s was 

considered for demonstration purposes, but is a parameter primarily dependent on the hardware capabilities of the 

optical link modules, such as transceivers or transponders. Last but not least, an anticipation time of τ = 15 min has 

also been considered, meaning that 15 min before the next hour starts, the LSTMs predict the two expected maxima 
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Fig. 3. Feature engineering by applying traffic decomposition into hourly Rmax and δmax with the subsequent 

features’ prediction (using 2 similar LSTM-NNs), followed by the computation of the next-hour link-capacity. 
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Fig. 2. Adaptive link-capacity adjustment and its corresponding parameters. 
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(Rmax and δmax) of that hour, based on the maxima observed in the past 47 h and 45 min. The value of τ is chosen 

heuristically relative to TC, and is accounting for the reconfiguration times of the aforementioned optical link modules. 

4. DCMA Performance and Results’ Analysis 

The forecasting performance is evaluated on the testing set by predicting the maximum data rate and traffic variability 

within the next capacity adjustment cycle of 1h (Fig. 3) as: 

�̃�𝑚𝑎𝑥(𝑡𝑖+1) = 𝑓({𝑅𝑚𝑎𝑥(𝑡) | 𝑡0 ≤ 𝑡 < 𝑡𝑖+1 − 𝜏}), and 𝛿𝑚𝑎𝑥(𝑡𝑖+1) = 𝑓({𝛿𝑚𝑎𝑥(𝑡) | 𝑡0 ≤ 𝑡 < 𝑡𝑖+1 − 𝜏})   (1) 

where 𝑓LSTM(⋅) are the LSTM prediction functions, and 𝑡0 – the earliest data rate observation. Thus, the next-cycle’s 

set capacity becomes: 

𝐶(𝑡𝑖+1) = (⌈
�̃�𝑚𝑎𝑥(𝑡𝑖+1)

∆𝐶
⌉ ⋅ ∆𝐶 + 𝑀)     (2) 

with ⌈∙⌉ being the ceiling function. As mentioned earlier, in order to compensate for underestimates of the maximum 

data rate due to highly variable traffic bursts as much as possible, the DCMA adds a flexible/dynamic capacity margin 

M acc. to eq. (2) and Fig. 3, where recommended by the predictor, i.e., based on the predicted traffic variability: 

      𝑀(𝑡𝑖+1) = ⌊
�̃�𝑚𝑎𝑥(𝑡𝑖+1)

∆𝐶
⌋ ⋅ ∆𝐶,     (3) 

with ⌊∙⌋ being the floor function. The results of DCMA application show that the δmax prediction-based margin, M, 

matches the target, i.e., the optimal/theoretical margin (Fig. 4 (a), green curve) in over 97% of cases (Fig. 4 (b), red 

curve), yielding an average hourly capacity saving of over 77%. Nevertheless, two traffic outliers manage to “escape” 

both predictions (�̃�𝑚𝑎𝑥(𝑡𝑖+1) and 𝛿𝑚𝑎𝑥(𝑡𝑖+1)) though, leading to a low risk of under-provisioning of roughly 0.45%. 

5. Conclusions 

Applying DCMA in parallel with the main traffic forecasting for adaptive link-capacity allocation is a promising way 

to compensate for a large proportion of prediction under-estimates. Nevertheless, a small percentage of traffic outliers 

still represents a challenge to be accurately predicted, however, omitting them through synthetic data sets or averaging 

them out makes the provisioning solution less applicable for a real-world scenario. 
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Fig. 4. (a) Optimal/theoretical capacity with δ-based margin. (b) Experimental DCMA based on forecasted δmax. 
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