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Abstract: We experimentally investigate an extended reach E, S, C + L-band transmission system 

covering 27 THz with mid-span doped fiber and distributed Raman amplification, measuring 264.7 

Tb/s from GMI and 250.8 Tb/s after decoding after 200 km transmission. © 2024 The Author(s) 

1. Introduction  

New optical transmission bands [1, 2] and fibers utilizing the spatial domain [3, 4] have been widely investigated as 
solutions to the ever-increasing quest for more optical fiber transmission capacity. Expanding the utilized spectral 
windows in particular offers a potentially significant benefit in the near-term as a method of extending the life of 
already deployed optical fibers to provide new transmission bandwidth without the large capital expenditure of new 
fiber deployment [1, 2]. Combining multi-band systems with high-order modulation and dense wavelength (WL) 
division multiplexing (DWDM) is a promising approach to fully exploit deployed fiber capacity. 

However, moving away from the low-loss window of standard single-mode fibers (SMFs) requires amplification 
schemes beyond the standard erbium (E)-doped fiber amplifier (DFA) that is a staple of C or C/L-band systems. 
Previously, S/C/L-band transmission has been explored with various amplifier technologies supplementing EDFAs 
including semiconductor optical amplifiers, distributed and discrete Raman amplification and Thulium (T-) DFAs.  In 
particular, combining T/E-DFAs with distributed Raman amplification has enabled 256 Tb/s (GMI) transmission 
covering 19.8 THz over 54 km of SMF [5] and 200.5 Tb/s over 2 x 100 km SMF spans [6]. The addition of U and O-
band segments recently led to 119.4 Tb/s transmission on deployed fiber using 25 THz combined bandwidth [7], while 
E/S/C/L-band transmission with 27.8 THz bandwidth enabled >300 Tb/s transmission over 50 km of SMF [8]. 

 Here, we expand on a recent wideband transmission demonstration [8], exploring multi-span DWDM E/S/C/L-
band transmission. We transmit a 27 THz WDM signal comprising 1050 x 25 GHz spaced polarization-division 
multiplexed (PDM)-64-quadrature-amplitude modulated (QAM) channels from 1416.1 nm to 1622.7 nm over 2 x 100 
km SMF spans. In addition to E/T-DFAs, we use a recently developed bismuth (B-) DFA optimised for DWDM 
transmission in combination with distributed Raman amplification. This combination leads to a 16% increase in 
decoded data-rate compared to previous 150 km transmission whilst using fewer WDM channels [8]. These results 
reveal both the need for careful selection of span length and amplifier characteristics to make a successful multi-band 
amplification strategy as well the potential of BDFA enabled E-band transmission to increase transmission capacity in 
new and deployed optical fibers. 

2.  Experimental Description 

The experimental set-up is shown in Fig. 1. The transmission set-up comprised a sliding 3 channel test band within a 
wideband WDM signal constructed from shaped amplified spontaneous emission (ASE) noise. The test-band 
consisted of a test and 2 neighbouring channels originating from 10 kHz linewidth tunable lasers for S/C/L-band 
channels and 200 kHz linewidth TLs for E-band signals. S-band signals were amplified in TDFAs with 20 dBm output 
power and noise figure <7 dB. E-band amplification used germanium-co-doped BDFAs, pumped with 700 mW laser 
diodes at 1310 nm for a maximum 24 dBm output power and <6dB noise figure across the transmission band at 0 dBm 
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Fig. 1: (a) Experimental set-up for E, S, C + L-band transmission  
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input power. The non-central test band channels were amplified in an E-band SOA before modulation. The test and 
neighbour channels were independently modulated in dual-polarization IQ-modulators (DP-IQ) driven by four 
arbitrary waveform generators (AWGs) operating at 49 GS/s. These produced 24.5 GBd, PDM-64-QAM root-raised 
cosine shaped signals with a roll-off of 0.01 based on 216-1 bit pseudo-random binary sequences. The same modulator 
was used for E-band modulation. However, it was observed that WL dependence of an internal polarization beam 
splitter (PB-S) severely degraded modulation quality in one polarization. Hence, E-band signals were split in a 
wideband PBS after modulation with the best polarization signal further split and combined with a fixed delay on one 
path in a PB combiner (PBC) to reconstruct a PDM signal, shown as an inset in the test-band panel of Fig. 1. 

Dummy WL channels were generated from ASE noise [9] shaped using band-specific optical processors (OPs) and 
DFA amplification. To minimize use of the limited number of BDFAs, the E-band noise seed used a high power 
super-luminescent laser diode (SLD) with 18 dBm output power centered on 1440 nm. The OPs were used to carve a 
movable notch in the dummy channel spectrum to accommodate the current test-channel. A custom developed multi-
port OP [10] was used for the E-band. The LCOS based device contained 18 individual 1 x 1 ports with minimum loss 
of 5 dB providing a notch > 40 dB with a double pass configuration. The combined test and dummy channels were 
transmitted over 2 x 100km spans of OH absorption suppressed SMF with loss of 0.24 dB/km, 0.19 dB/km and 0.21 
dB/km at 1440 nm, 1560 nm and 1625 nm, respectively. Between spans, multi-band DFAs compensated for fiber loss 
with additional Raman amplification achieved using back propagating pumps added in a WDM coupler. The first span 
used four x 10 nm spaced pumps from 1320 nm to 1350 nm with 250 mW power and the 2nd span used the same 
combination in addition to a 350 mW pump at 1385 nm. The input transmission spectrum was conditioned by the OPs 
to have roughly equal power per channel of -4 dBm at the fiber input.  

In each band, the receiver path consisted of amplification stages on either side of a 0.4 nm tunable band pass filter 
(TBPF) centered on the test-channel with a VOA for power adjustment. For S/C/L band signals, a single coherent 
receiver (CoRx) detected the signal using a 10 kHz linewidth local oscillator (LO). E-band signals used a distinct 
CoRx with an E-band optimised hybrid, dual-window photodiodes and a 200 kHz linewidth LO laser. The signals 
were acquired by an 80 GS/s real-time oscilloscope that stored traces for offline processing, similar to [11]. The 
throughput of each WL channel was estimated from the GMI and independently assessed using LDPC codes from the 
DVB-S2 standard. Code-rate puncturing was implemented to achieve a bit error rate (BER) below 5×10-5 with a 1% 
overhead outer hard-decision code [11], assumed to remove any remaining bit errors. Signal quality and throughput 
measurements were performed on three 10 µs traces for each WL channel in turn.  

3.  Results 

Figure 2 shows optical spectra along the 200 km transmission link. The characteristics of the first Raman amplified 
span are shown in Fig. 2 (a). The launched E/S/C/L-band input signal (black), becomes tilted at the fiber output (blue) 
by the combination of stimulated Raman scattering (SRS) and the fiber loss profile (dashed grey, right-axis). The 
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Fig. 2:  Wideband signal spectra (a) left-axis E/S/C/L-band signal at input (black) + output (red) of first fiber span with Raman 

amplification profile (blue). Right-axis span loss of 100 km fiber span, (b) Launch spectra after mid-stage DFA amplification with 
and without Raman pumps acting on first span, and (c) output of span 2 with and without Raman amplification in both spans. 
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addition of the 1320-1350 nm Raman pumps provides some gain across the E-band with some gain at low S-band 
wavelengths and increased SRS slightly boosting C/L-band signals. Some ripples are evident in the E-band input 
spectrum and arise from the SLD used to generate dummy channel spectrum which is imperfectly compensated in the 
E-band OP. Fig 2(b) shows the output spectra of the mid-span amplification stage. The impact of higher input power 
when utilizing the first span Raman pumps leads to higher output power in the B/T-EDFAs, with little impact on the 
C/L-band EDFAs. Whilst the C-band profile largely resembles the SRS tilted spectrum at the output of span 1, an 
additional strong gain tilt is added by the L-band EDFA giving >15 dB power variation across the band. We note that 
although previously [8], an additional 1385 nm Raman pump provided large Raman ON-OFF gain across S-band 
channels, in this span, the higher input power to the B/TDFAs also lead to gain tilt that reduced available E-band 
spectrum.  The 1385 nm pump was used in the second span providing large gain across E and low S-band channels, as 
shown in Fig. 2(c), which again shows that increased SRS slightly boosts the power of C and L-band signals when the 
Raman pumps are utilized.  

The signal quality measurements are summarized in Fig. 3 which shows the GMI-estimated and decoded data-rates 
as a function of wavelength. The majority of C and L-band channels have a GMI data-rate between 260 Gb/s and 285 
Gb/s decreasing at the edge of amplifier gain windows and a small reduction in the L-band region suffering from gain 
tilt after mid-stage amplification. In S-band, the data-rate ranges from 270 Gb/s to around 240 Gb/s at lower 
wavelengths with some peaks coinciding with gain of Raman pumps evident in Fig.2. In E-band, the per-channel data-
rates appear to be conditioned primarily by the Raman amplified spectral shape shown in Fig. 2, with a number of dips 
in data-rate that is believed to arise from a combination of water absorption in E-band components (OP and TBPF) 
and ripple originating from the SLD that results in variation of channel OSNR after setting test-band power in relation 
to it. The combined data-rate of all 1050 WDM channels after 200 km transmission was 264.7 Tb/s when estimated 
from the GMI and 250.8 Tb/s after LDPC decoding. The per band estimated data-rates were 62.5, 79.8, 54.3 and 66.2 
Tb/s from 287, 310, 199 and 254, E, S, C and L-band channels, respectively.  

4.  Summary 

We have experimentally investigated multi-span DWDM transmission of a wideband E, S, C + L-band signal 
spanning 27 THz. Transmitting 1050 x 25-GHz spaced PDM-64QAM channels over a 200 km link, with mid-stage 
amplification from bismuth, thulium and erbium DFAs, we record a GMI estimated data-rate of 264.7 Tb/s  or 250.8 
Tb/s after LDPC decoding. The results show the importance of balancing the varying span loss and Raman gain across 
spectral bands to the amplifier characteristics in order to maximize data-throughput and the potential of E-band 
transmission to increase the information carrying capability of new and deployed optical fibers.  

    This work is supported by EPSRC grant ARGON (EP/V000969/1). 
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Fig. 3: GMI estimated and LDPC decoded data-rate after 200 km transmission 
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