
Digital Twin of Unrepeatered Line Based on Raman and 
Remote Optically Pumped Amplifier Machine Learning Models 

 
Arthur Minakhmetov, Benjamin Prieur, Maël Le Monnier, Delphine Rouvillain and Bruno Lavigne 

ASN/Nokia, Route de Villejust, 91620 Nozay, France 
Author e-mail address: arthur.minakhmetov@asn.com  

 
Abstract: We demonstrate an accurate digital representation of an unrepeatered line based on 
separate measurement-based machine learning models of Remote Optically Pumped Amplifier and 
Raman amplification. We assess the accuracy via OSNR measurements in the line. © 2023 Nokia 

 
1. Introduction 
The current era of optical communications offers a vast variety of tools, network components, and transponder types 
so one could design an optical network with the required capacity and durability at the right cost. In that context, one 
should be aware of generic one-for-all approaches, as they may result in network designs that are challenging from 
the cost/bit perspective. A good example would be the design of low-range (several hundred kilometers) submarine 
optical lines. If one decides to adopt a usual for long-range submarine lines approach with the placement of 
electrically powered erbium-doped fiber amplifiers (EDFA), then the cost/bit becomes high. Yet less expensive 
solutions exist that do not require high-cost optical cables with electric cabling to power an EDFA. Such solutions 
would be unrepeatered optical lines that deliver high capacity without recourse to active in-line elements [1]. 

Unrepeatered lines mainly rely on the amplification of optical signal via Raman amplification [2]. In the case of 
cables with very high span-loss, in-line amplification may be required but done by means of Remote Optically 
Pumped Amplifiers (ROPA) [3]. ROPA represents an EDFA that is pumped by an optical pump delivered from a 
remote location, potentially through the same fiber as used for communication channels. In that context, it is 
important to correctly design and optimize such unrepeated lines to deliver the best performance possible. In this 
paper, we demonstrate a digital representation/twin of an unrepeatered line shown in Fig. 1 based on separate 
Machine Learning (ML) models of ROPA and Counter-Raman amplification operating jointly. Such digital twin 
represented in Fig. 2 can be used for monitoring purposes and for the further design of unrepeatered lines. 

In literature one can find proposals for ML [4-6] and measurement-based [7] models for Gain representation of 
EDFA and these models are suitable for ROPA modelling as well. However, we propose our own ML model of 
ROPA/EDFA, that is similarly precise as [4,6] but simpler in terms of computation complexity due to simplicity of 
neural network structure; and more flexible in channel placement, as not tied to a fixed channel grid. In comparison 
to [7], our ROPA ML model is less precise, but offers differentiability of Gain function needed for optimization 
purposes. Also, we demonstrate ROPA ML model for Noise Figure (NF), that is on-par precise as [8], but with 
simpler ML model and without fixed channel grid. ML models for Raman amplification have been reported [9-10], 
however, as we consider only 2nd order Raman pump, we can use simpler ML model delivering Gainon/off and NF 
(not considered in [9-10]). If consider joint operation of several ML models, one finds few examples of such tests: 
we note [11] that use ML EDFA models for a suite of EDFAs, and [12] that considers them in a network.  

We demonstrate joint operation of ML models of ROPA and Counter-Raman amplification for the first time, to 
the best of our knowledge. We verify experimentally such ML models interworking by comparing with OSNRs in 
the unrepeatered line and achieving up to 0.13 dB of Mean Absolute Error (MAE). 
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Fig. 1 Unrepeatered line consisting of Counter-Raman amplification, that is also pumping ROPA. 
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Fig. 2 Representation of digital twin of unrepeated line based on separate ML models of ROPA and Raman Amplification. 
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2. Digital Twin of Unrepeatered Line: ML models or ROPA and Counter-Raman Amplification. 
We consider an unrepeatered line presented on Fig. 1 that consists of a ROPA and a Raman pump. We study 2nd 
order Raman pump, i.e., of two wavelengths: pump at λpump sent with Ppump power and seed at 1485 nm sent with 
Pseed power. First, Raman pump amplifies optical signal via Counter-Raman amplification. Second, the power at 
1485 nm, denoted as P1485 at ROPA location, optically pumps the doped fiber embedded in the ROPA, resulting in 
complimentary to Counter-Raman amplification. We note that output power after ROPA may influence Counter-
Raman amplification and affect P1485, making the interaction between the Raman pump and ROPA interdependent. 
Below we describe ROPA and Raman amplification ML models and join them to form a digital twin (Fig. 2). 

We consider an experimental setup shown in Fig. 3a) which we used to characterize the ROPA and create its ML 
model. Raman pump is set with Pseed=100 mW, Ppump=1600 mW and connected via 75 km Pure Silica Core Fiber 
(PSCF) fiber to the ROPA. Up to 84 optical channels at 50GHz in C-band are emulated by Amplified Spontaneous 
Emission (ASE) source, carved at 50 GHz by Wavelength Selective Switch (WSS) and sent through the ROPA. To 
characterize ROPA and build representable ML model we consider special spectral profiles, like those in [5]. Two 
Variable Optical Attenuators (VOA) are used to control the setup configurations. We adjust the total power of 
channels Pin

tot passed through ROPA via VOA1, and the pump P1485 passed to ROPA through VOA2. While changing 
channels spectral profile, Pin

tot and P1485 we measure per-channel values of Gain and NF. 
 We base ML ROPA models for Gain and NF on 3-layer artificial neural network (ANN) [13] of 30, 20, 10 

neurons/layer with tanh(x) activation function. We use 4 standardly scaled inputs for ANNROPA: Pin
tot, P1485, λ and 

Gtilt. Pin
tot

 (mW) represents total power of channels in C-band, P1485 (mW) represents optical pump, λ (nm) means the 
central wavelength of a channel, and Gtilt is a parameter that we call Generalizedtilt linked to geometrical form of 
spectral profile, Gtilt is proportional to spectral Tilt. To train ANN we use 15 spectral profiles with nominal Pin

tot∈[-
30, -5] dBm at 5 dB step and P1485∈[5, 12] dBm at 1 dB step. To validate ANN we use 5 spectral profiles with -20, -
15, -10, 10, 15 dB of Tilt with Pin

tot∈[-30, -5] dBm at 5 dB step and P1485∈[5, 12] dBm at 1 dB step. For ANN test 
we employ 5 tilted spectral profiles with Tilts of -5, -4, -2, -1, 5 dB and 5 flat profiles: full-band, 1st and 2nd halfs, 3rd 
and 4th quarters of C-band in λ (Fig.3b). We train ANNROPA-G for Gain and ANNROPA-NF for NF via LBFGS [13] 
Mean Squared Error (MSE) optimization, we stop training when validation dataset achieves minimum MSE. 

We present performance of two ANNROPA for Gain and NF in Fig. 4 on test data, we show realistic cases only 
with Gain > 10 dB and NF < 10 dB limits respectively. On Fig. 4a) we make a Gain regression plot, i.e., 
correspondence of Gainpredicted to Gaintrue, we observe “y=x” type straight line meaning ANN predicts Gain correctly: 
we achieve MSE=0.05 dB2, MAE=0.16 dB and Root MSE (RMSE)=0.23 dB. On Fig. 4b) we attempt to analyze 
errors on Gain prediction: in 2D we plot “Pin

tot
 & P1485” configurations and color with orange points where the error 

on prediction gets bigger than 99th percentile (0.63 dB). We attest that the majority of “Pin
tot

 & P1485” configurations 
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Fig. 3: a) Setup used for ROPA characterization and digital twin verification of unrepeatered line; b) spectral loadings for ANNROPA test. 

 
Fig. 4: ML models of ROPA Gain and NF: a) regression plot for Gain, b) Gain error analysis, c) regression plot for NF, d) NF error analysis. 

Monitor 
Input

OSASwitch

2nd Order
Raman 
Pump

VOA1

Pin
tot

control

ASE WSS

PSCF: 100 km

Monitor 
Line Output

 
Fig.5: ML model for Counter-Raman amplification: a) Raman Pump characterization setup, b) Gainon/off regression plot, c) NF regression plot. 
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don’t exceed 0.63 dB limits, and those that do exceed, they are located outside of normal ROPA functioning. On 
Fig. 4c) we make a NF regression plot and attest correct predictive performance with MSE=0.0013 dB2, MAE=0.02 
and RMSE=0.04 dB that is better than [8]. We analyze NF prediction error on Fig. 4d), due to high ANN precision 
we apply 99.9th percentile threshold: we see that almost all “Pin

tot
 & P1485” configurations don’t exceed 0.26 dB error.  

We characterize Counter-Raman amplification using setup shown on Fig. 5a), it is similar to the setup in Fig. 3a) 
but without ROPA and with 100 km of fiber. We transmit 80 channels of 50GHz width in C-band and measure 
Gainon/off and NF for 20 channels. A measurements dataset is based on next configurations: Ppump∈[800, 2000] mW at 
200 mW step, Pseed=[40, 60, 90, 120, 150, 190, 230] mW and Pin

tot∈[-10, 10] dBm at 5 dB step. We use an ANNRaman 
of 1-layer with 60 neurons and tanh(x) activation function. ANNRaman takes as input Pin

tot, Ppump, Pseed and λ delivering 
Gainon/off and NF. We make 70-15-15% data split for train, validation, and test datasets. We train ANNRaman on train 
dataset using ANNROPA optimization technique; validation dataset aids to stop training via early stopping method. 
On Fig. 5b-c) we report ANNRaman precision on test dataset. For Gainon/off prediction we achieve MSE=0.02 dB2, 
MAE=0.1 dB and RMSE=0.14 dB. For NF prediction we get MSE=0.02 dB2, MAE=0.11 dB and RMSE=0.16 dB. 

On Fig. 2 we demonstrate the internal functioning logic of digital twin of unrepeated line based on ANNROPA and 
ANNRaman. As we stated before, the functioning of ROPA and Counter-Raman amplification is interdependent: we 
discovered that this interdependence can be expressed as P1485=P1485_nom/ΔP1485 (mW), where ΔP1485=f(Pout, Gtilt_out) 
and P1485_nom=g(Ppump, Pseed). P1485_nom is the nominal pump power injected in ROPA in the absence of signal, Pout is 
the total power of channels in C-band after ROPA and Gtilt_out is the Gtilt parameter of spectral profile after ROPA. 
One can approximate P1485_nom=g(Ppump, Pseed) using polynomial regression and ΔP1485=f(Pout, Gtilt_out)≈f*(Pout) using 
linear regression. We iteratively evaluate ΔP1485 using temporary outputs of ANNROPA so to calculate Pout and Gtilt_out 
and update ΔP1485. We start with ΔP1485=1 and make 4 iterations to converge to P1485 to be used in ANNROPA. 

3. Assessment of Digital Twin of Unrepeatered Line 
We control the unrepeatered line digital twin via OSNR measurements at the end of the line in a setup like in Fig. 3. 
It’s a separate setup that undergone necessary recalibration. We send to ROPA 80×50GHz flat spectrum C-band 
channels of Pin

tot=[-15,-20] dBm but we use only up to 40 channels for OSNR measurements. We set Pseed=100 mW, 
Ppump=1600 mW and via VOA2 vary P1485 sent to ROPA. We consider P1485=[12, 10, 9, 8, 7] dBm. In Fig. 6 we show 
4 cases: P1485=[12, 10] dBm with Pin

tot=[-15, -20] dBm. In such cases, MAE varies between 0.13 and 0.29 dB 
attesting good precision. If consider P1485=[9, 8, 7] dBm: for Pin

tot=-20 dBm we get MAE=[0.34, 0.46, 0.65] dB; for 
Pin

tot=-15 dBm we get MAE=[0.34, 0.51, 0.79] dB respectively. We see that MAE can reach 0.79 dB, however, 
ROPA-involving applications usually occupy only 1540-1564 nm region, so if we limit analysis to that range, we get 
better MAE=[0.30, 0.39, 0.54] dB for Pin

tot=-20 dBm; and MAE=[0.25, 0.39, 0.62] dB for Pin
tot=-15 dBm. 

4. Conclusions 
We demonstrated a digital twin of an unrepeatered line based on separate ML models of ROPA and Raman 
amplification for the first time, to our knowledge. The ROPA/EDFA ML model is a novel model for Gain and NF, 
offering more flexibility with less complexity. The Raman amplification ML model shows the possibility to use low-
complexity ANN for simultaneous Gainon/off and NF prediction. We showed how to resolve interdependence of these 
models in an unrepeatered line and how to build its digital twin. We verified its good precision in OSNR prediction. 
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Fig. 6 : Experimental assessment of digital twin of unrepeatered line through OSNR predictions. 
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