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Abstract: A linear feed-forward equalizer is implemented by a potentially low-power
spiking neural network. For a 100Gb/s PAM-4 IM/DD optical 2km transmission, no perfor-
mance penalty compared to a digital implementation is observed. © 2022 The Author(s)

1. Introduction

To sustain the exponential growth of data center traffic, optical transceivers need to evolve towards higher rates,
smaller footprint and lower power consumption, at the same time. To achieve these challenging goals, recent
research envisions moving parts of digital signal processing (DSP) to analog frontends with lower power con-
sumption.

Photonic neuromorphic computing [1] has been proposed, e.g., for chromatic dispersion (CD) compensation
and nonlinear equalization in short-reach optical transmission [2—4].

Also, a return to analog adaptive equalizers has gained traction, e.g., in [5], the transmitter DSP feeds two
electrical non-return-to-zero (NRZ) signals to an analog pulse-amplitude-modulation 4-level (PAM-4) encoder,
whose output is filtered by a continuous time linear equalizer (CTLE) and a 3-tap feed forward equalizer (FFE).

At the same time, the research community is striving to implement more powerful algorithms, e.g. based
on artificial intelligence (AI) techniques, on analog electronics. An important subfield is in-memory-computing
(IMC) [6], which aims for efficient calculation of vector-matrix multiplications. Research on IMC is mainly driven
by the urgent need of Al accelerators for making inference by artificial neural networks (ANNSs) more power-
efficient. Eventually, IMC may enable the use of ANNSs for signal processing in the data path of communication
systems, see, e.g., [7]. Analog electronic neuromorphic computing offers an alternative path towards Al-based
signal processing. Spiking neural networks (SNNs) [8] in analog hardware [9] combine IMC with sparse repre-
sentation of information by spiking signals.

In [10, 11], we have shown by simulations in Norse [12] that SNN demappers compensate impairments in a
simulated intensity-modulation / direct-detection (IM/DD) link, outperforming linear equalizers and nonlinear
ANN equalizers. Using hxtorch. snn [13, Sec. 2.3.5], the proposed SNN demappers have been also mapped to
and evaluated on the analog neuromorphic BrainScaleS-2 (BSS-2) hardware platform [9]. The simulated IM/DD
link considered in [10, 11] is dominated by nonlinear impairments. In [14], SNN decision feedback equalization
(DFE) is considered to compensate strong linear inter-symbol interference (ISI).

In this work, we consider offline processing of experimental data from a 100 Gb/s 2km IM/DD PAM4 optical
transmission link. We observe that after anti-alias filtering (AAF), timing recovery (TR), and downsampling, the
received signal is mainly impaired by linear ISI. Hence, we propose the implementation of a linear FFE filter in
a simple SNN. Despite the intrinsic nonlinearity of the spike mapping/demapping, the proposed SNN shows no
performance penalty compared to a digital linear equalizer. This result promises significant power reduction, by
dispensing with the analog-to-digital converter (ADC), and enabling sparse signaling and analog processing.

The remainder of this paper is organized as follows. In Sec. 2, we briefly introduce SNNs. We present the
experimental setup in Sec. 3, and we conclude in Sec. 4 with a discussion of the results.

2. Spiking Neural Networks

In Fig. 1, we display SNNs as implemented in Norse [12]. Information is represented by spike trains z;(t) =
Y« 6(t —t¥) emitted by input neurons {n;}. The spike trains are almost always equal to zero. Due to their sparsity,
during one inference step, only a few neurons are active, and the active neurons only emit a small number of
spikes, which results in very low power consumption. The input spike trains are then combined by a synaptic
array, which calculates the weighted sum Y, w;;z;(t). Subsequently, a filter with an impulse response that decays
exponentially as exp(t/Tgn ) is applied, with Ty, being the synaptic time constant. The resulting synaptic currents
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Fig. 1. SNN building block.

I;(t) are then fed to leaky-integrate and fire (LIF) neurons, which have as an internal state a membrane potential
vj(t), described by the differential equation

TmemV;j (1) = [ve —v;(0)] + Ry - (1), (1
where 7, is the membrane time constant, vy a leakage potential, and R, the leakage resistance. When the membrane
potential v;(r) exceeds a threshold v at time t’]?, the LIF neuron emits a spike z9(¢) = 6(f — tj‘) and the membrane
potential is reset. Leaky-integrate (LI) neurons (not shown in the figure) follow the same dynamics as LIF neurons,

without firing.

3. Experimental Setup
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The experimental setup is displayed in the figure above. A pseudo-random bit sequence is generated offline and
mapped to 256k PAM-4 symbols. The symbol sequence is then upsampled with NRZ pulse shaping to a 2 samples
per symbol (SPS) sequence. The upsampled sequence is loaded to an arbitrary waveform generator (AWG) with a
3-dB bandwidth of >25 GHz. Assuming the 6% overhead KP4 forward error correction (FEC), we set the symbol
rate to 53 GBd and operate the AWG at twice the symbol rate, i.e., 106 GSa/s, with the help of an external clock
source. Afterwards, the electrical signal is fed to a transmitter optical sub-assembly (TOSA), which amplifies
the electrical signal with an integrated driver amplifier and generates an optical signal with an electroabsorption
modulated laser (EML). The TOSA output is fed into a 2km G.652 single-mode fiber (SMF). A variable optical
attenuator (VOA) is used after the fiber to control the received optical power (ROP). A commercial receiver would
detect the signal with a receiver optical sub-assembly (ROSA) containing a PIN photodiode (PD) and a phase-
matched transimpedance amplifier (TIA). However, due to the unavailability of a ROSA during the experiment we
use at the receiver a 70 GHz PIN PD accompanied by a 70 GHz 11 dB fixed gain electrical amplifier (EA). After
the EA, the received electrical signal is quantized and captured with a digital storage oscilloscope (DSO) operating
at 256 GSa/s with a 3-dB bandwidth of 113 GHz. By the VOA, we sweep the ROP at the PD input from —2 dBm
to —8 dBm. After TR [15], the signal is downsampled to 1 sps and 4 M samples are stored for offline processing.

4. Results and Discussion

In Fig. 2, we compare a linear FFE followed by demapping with optimized decision boundaries with the proposed
linear SNN demapping. For the considerd ROPs, the 1-tap linear FFE does not reach the KP4 threshold, which is
in line with the substantial ISI that we expect from the spectrum displayed in Fig. 3. With a 9-tap linear FFE, we
achieve a bit error rate (BER) below the KP4 threshold at —4 dBm.

Additionally, we consider a nonlinear ANN with two hidden layers with 40 and 20 neurons, respectively, and
ReLU activations. An additional linear layer bypasses the hidden layers. The 4 ANN outputs are interpreted as log-
probabilities on the four PAM4 symbols, corresponding to a soft decision (SD). The argmax of the SD provides
the hard decision (HD). We note that nonlinear equalization improves only negligibly over the 9-tap linear FFE.
Therefore, we conclude that the experimental link is mainly impaired by linear filtering effects and noise.

Disclaimer: Preliminary paper, subject to publisher revision



WA4E.1 OFC 2023 © Optica Publishing Group 2023

T T T T T T T 10 T
1y ‘\‘\’Mi
B 1 —_ S5t .
i 1 @
=
1072 £ = 2 0r i
7
5
24 | \ i e
E 1073 X = g
I | —e&— 1 tap linear FFE K ] é
| | —m— 9 tap linear FFE 2
10-4 || - @~ 9tap SNN \ ; %
|| —~— 9 tap ANN 1 &
| | —— KP4 threshold
1075 I I I I I I I
-8 -7 —6 -5 —4 -3 -2 —53 —26.5 0 26.5 53
ROP at PD input [dBm] frequency [GHz]
Fig. 2. BER results. Fig. 3. Spectrum after AAF and resampling.

Conclusions. The proposed linear SNN performs exactly as well as the linear FFE, which shows that SNNs are
a promising technology for low-power implementation of linear FFEs.
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