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Abstract: This work proposes a technique to elucidate mode coupling when antiresonant
fibers are twisted and bent. From this, we show how the birefringence of a nested antireso-
nant nodeless fiber changes as function of the deployment. © 2022 The Author(s)

1. Introduction

Antiresonant hollow-core fibers (ARFs) [1] have attracted the interest of the optical community because they can
bring the advantages of free space propagation to the world of fiber optics. The promise of low non-linearity,
whopping available bandwidth, and exceptional polarization purity has driven research to reduce attenuation in
these structures [2]. Nested antiresonant nodeless fibers (NANFs) and double nested antiresonant fibers (DNANFs)
[3] have now achieved a loss comparable to solid-core fibers, so they are legitimate candidates for deployment in
real-world applications, from telecommunications to optical sensors. It is thus of paramount importance to be able
to model and predict the fiber performance under different deployment conditions.

The techniques used to model the performance depend on the problem at hand. When an ARF is uniform along
its length, its performance is determined by the modes supported by its cross-section. In this case, one can employ
the finite element method (FEM) or other numerical methods to solve for the modes. In all the other cases though,
modes do not exist strictly, and one should employ analyses based on coupled-mode theories (CMTs), where the
modes of the uniform straight fiber are used to expand the electromagnetic field of non-uniformly deployed fibers.
This technique is rarely used in ARFs because CMTs fail to treat geometrical deformation rigorously and cannot
work with highly lossy modes. To address these shortfalls, we recently developed a more general approach—
the unified coupled-mode theory (UCMT) [4]—which is well suited for ARFs. Here, we use it to analyse the
polarization properties of a 5-tube NANF deployed under bend and twist, conditions similar to those that the fiber
would encounter if coiled.

The polarization properties of an ARF are determined by its fundamental mode (FM). Indeed, the fiber guid-
ing mechanism strips high-order modes (HOMs) out from the core, making the fiber virtually single mode after
sufficient propagation length. This single mode approximation is so effective that HOMs are rarely considered in
practice; nevertheless, they remain legitimate electromagnetic solutions that might couple with the FM, so they
must be included in the CMT. Actually, a reliable description of ARFs in terms of CMT requires hundreds of
modes, preventing researchers from having a clear physical understanding of the fiber polarization properties in
terms of familiar quantities such as the birefringence vector. We show here a numerical method to reduce the
coupled-mode equation from an N ×N system that encloses the coupling information, where N is the number
(in the order of a few hundreds) of considered modes, to a 2× 2 system that distills the fiber local polarization
properties. We apply the method to the twisted and bent 5-tube NANF, and we extract its local birefringence vector
from the reduced system. This method can be used any time the deployed ARF remains virtually single mode.

2. Theoretical model

When the fiber is deployed in a coil, it is subject to a complex combination of twist and bend. In this pre-
liminary work, we consider a simpler case where the plane of the bend, the bending radius Rb, and the
twist rate τ̇ are all constants. In these settings, the coordinate deformation that twists and bends a straight
fiber is x(u,v,s) =−Rb +[Rb +ucosτ(s)+ vsinτ(s)]cos(s/Rb), y(u,v,s) = vcosτ(s)−usinτ(s), and z(u,v,s) =
[Rb +ucosτ(s)+ vsinτ(s)] sin(s/Rb), where (u,v,s) is the local Cartesian coordinate system centered at the fiber,
and (x,y,z) is the laboratory Cartesian coordinate system of the deployed fiber. As it is defined, τ(s) is the angle
that the cross-section has rotated because of twist, namely τ(s) = τ̇ s. Since we are considering ARFs, most of the
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light is confined in the hollow-core; therefore, the stress-induced effects occurring in the glass when the fiber is
deployed are negligible.

A fiber deployed in this configuration can be studied by using the UCMT. The theory first exploits transfor-
mation optics (TO) to define a waveguide electromagnetically equivalent to the deployed fiber, then it describes
the propagation in terms of the equivalent waveguide and the modes of the straight fiber—we refer the reader to
the original paper for a detailed explanation [4]. The propagation within the equivalent waveguide is described, in
terms of the modes of the straight fiber, by the coupled-mode equation da/ds =− j [D+X(s)]a(s), where a is the
vector of the complex amplitudes of the modes, D is the diagonal matrix of the mode propagation constants, and X
is the coupling matrix. Although the twist rate and bending radius are constant, the coupling matrix still depends
on the coordinate s because the fiber cross-section bends towards different orientations as is rotated by the twist.
Therefore, one must compute X at each cross-section rotation τ(s). This is computationally expensive since each
X is derived from the evaluation of N2 overlap integrals. However, a closer look at the overlap integral reveals that
X is a linear combination of three coupling matrices:

X(τ(s)) = τ̇ X̄twist +
(
X̄bend(0)cosτ(s)+ X̄bend (π/2)sinτ(s)

)
/Rb, (1)

where X̄twist is the coupling matrix obtained by twisting the fiber with τ̇ = 1rad/m, and X̄bend(0) and X̄bend(π/2)
are those obtained by bending the fiber with Rb = 1m when the cross-section has rotated by 0 and π/2 radians,
respectively. Eq. (1) provides a method to compute the coupling matrix at any τ(s), Rb, and τ̇ values, at the cost
of computing only three coupling matrices.

The coupled-mode equation contains all the information about the propagation, which can be numerically solved
to find the fiber polarization properties, yet the inspection of the coupling matrix does not provide any physical
insights. Indeed, when the fiber is twisted and bent, the FM couples strongly with the HOMs in the equivalent
waveguide, forming an intricate relation of direct and indirect coupling from which the FM is hard to disentangle.
This seems counter-intuitive when examining ARFs which are virtually single mode. In reality, the single mode
approximation is recovered by changing the basis of the modes used in the UCMT, from the modes of the straight
fiber to the local modes of the equivalent waveguide. The local modes can be found by diagonalizing matrix D+
X(τ(s)): their propagation constants are the eigenvalues; and their fields, expressed in the basis of the modes of the
straight fiber, are the eigenvectors. If we call ΛΛΛ(τ(s)) the diagonal matrix of the eigenvalues and V(τ(s)) the matrix
of the eigenvectors, we can write the coupled-mode equation concerning the amplitudes b(s) = V−1(τ(s))a(s) of
the local modes as db/ds = − jN(τ(s))b(s) with N = ΛΛΛ− jτ̇ V−1 (dV/dτ). Matrix N is nearly block diagonal,
with a 2× 2 block N2 that regards the local FM. Therefore, a reduced coupled-mode equation for the local FM
can be obtained as db2/ds = − jN2(τ(s))b2(s), where b2 is the vector of the local FM amplitudes. Considering
this reduced system, we go back to the basis of the FM of the straight fiber by using the change of basis a2(s) =
V2(τ(s))b2(s), where V2 is the reduced matrix V. In the basis of the FM, the coupled-mode equation is da2/ds =
− jL2(τ(s))a2(s), where L2 = V2 N2 V−1

2 + jτ̇ (dV2/dτ)V2. Finally, we use TO to relate the amplitudes of the
FM in the equivalent waveguide to those in the twisted and bent fiber. In particular, it can be shown that the latter
are related to the former as ã2(s) = R⊤

2 (τ(s))a2(s), where R2 is the standard, two dimensional, rotation matrix.
Accordingly, the equation that describes the evolution of the amplitudes ã2 is dã2/ds =− jL̃2(τ(s)) ã2(s), where
L̃2 = R⊤

2 L2 R2 − jτ̇ R⊤
2 (dR2/dτ). Matrix L̃2 is the 2× 2 complex matrix that describes the propagation of the

FM within the twisted and bent fiber. The FM has degenerate polarization modes and thus, we only require L̃2
to yield exhaustive information about the local polarization properties of the fiber, and the integration of − jL̃2
along s yields its Jones matrix. Moreover, as in standard solid-core single mode fibers, L̃2 can be translated to the
3-dimensional vector κκκ in the Stokes space, whose components are κi = tr(L̃2 σσσ i)/2, where σσσ i is the i-th Pauli’s
matrix. One can obtain the local birefringence vector βββ and local dichroism vector ααα (if non-negligible) as twice
the real and imaginary part of κκκ , respectively [5]. These two vectors give complete and intuitive information about
the polarization behavior of the fiber.

3. Results

To demonstrate the power of this method, we study the polarization properties of a twisted and bent 5-tube NANF.
We show that, concerning the FM, the reduced 2× 2 system is a close approximation of the full system. As a
result, the information about the local birefringence and dichroism vectors can be extracted from the model. We
discuss the properties of local birefringence vector as an example.

We assume the 5-tube NANF to have symmetric cross-section and to be deployed with different configurations
of bend and twist. We vary the bending radius from 2.5 cm to 10 cm and the twist rate from 0.1 rad/m to 10 rad/m;
each combination of bend and twist is considered constant along the fiber. At each configuration, we first compute
the coupling matrix X(τ(s)) as per Eq. (1), where 380 modes of the straight fiber are used to compute the ma-
trices X̄twist, X̄bend(0), and X̄bend(π/2). Then, we reduce the coupled-mode equation from 380×380 to 2×2 by
following the technique introduced in the previous section, obtaining L̃2(τ(s)).
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Fig. 1. (a) SOP evolution; (b) magnitude, (c) direction angle 2δ , and (d) direction angle 2γ of the local bire-
fringence vector. Inset: 5-tube NANF cross-section.

To validate the reduction technique, we compare the state of polarization (SOP) obtained by integrating − jL̃2
over s to that obtained by propagating the full coupled-mode 380-dimensional system. Fig. 1(a) shows the evo-
lution of the SOP of the last 5m piece of the 50m long 5-tube NANF, twisted with τ̇ = 10 rad/m and bent with
Rb = 2.5 cm, where we launched a +45° linear SOP at the fiber input. Results show an excellent agreement be-
tween the SOP obtained from the 2×2 L̃2 matrix and that obtained from the full D+X matrix; agreement is also
achieved at all the other configurations of twist and bend.

We compute the local birefringence vector βββ as explained in the theoretical model, and we represent it against
τ(s), at different values of Rb, in terms of its magnitude and direction. We express the vector direction as 2δ

and 2γ , where 2δ is the angle that βββ forms with the vector (1, 0, 0) when projected in the s1 − s2 plane in the
Stokes space (i.e., the linearity), and 2γ is the angle that defines the circular component of the birefringence as
β3 = |βββ |sin(2γ). Fig. 1(b) shows that the magnitude of the birefringence vector at τ̇ = 10rad/m. The magnitude
is a periodic function of τ(s) with period 2π/5, which is clearly related to the number of tubes. It can be shown
that the birefringence is maximum when the bend squeezes the field towards a tube and is minimum when the
bend is towards a gap between tubes. Predictably, the birefringence increases with the decreasing of Rb. Like the
magnitude, the direction of the birefringence vector is periodic with period 2π/5. Fig. 1(c) and Fig. 1(d) show the
angles 2δ and 2γ obtained at τ̇ = 10rad/m. The angle 2δ oscillates around zero, which corresponds to the direction
parallel to that of the bending when observed from the laboratory frame. For bending directly toward a tube or a
gap, the structural features are balanced about the bend, and the birefringence vector coincides exactly with the
bend direction. For other bend directions, the birefringence vector tends to orient toward the tube centered nearest
to the bend direction. As Rb decreases, this deviation between birefringence vector orientation and bend direction
becomes increasingly marked. The angle 2γ sets the amount of circular birefringence: since it is not zero, there
is a (small) amount of circular birefringence. As 2γ decreases with the decreasing of the bending radius, linear
birefringence is the dominant effect at tight bends.

The periodic behavior of the magnitude and direction of the birefringence vector is fundamentally different from
what happens in standard single mode fibers, where the magnitude of the birefringence is decoupled from τ(s)
and its direction is always aligned with the bending direction. This complex dynamic may produce polarization
effects not seen in single mode fibers yet, and deserves future investigations.
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