
Silicon Photonic Hopfield-like Electro-optical Recurrent 
Network for Time-series Data Processing and Recognition 

 
Guangwei Cong, Noritsugu Yamamoto, Rai Kou, Yuriko Maegami, Morifumi Ohno, and Koji Yamada 

Platform Photonics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki 
305-8569, Japan 

gw-cong@aist.go.jp 

 
Abstract: We propose and experimentally demonstrate a Hopfield-like electro-optical recurrent 
network based on silicon photonic circuits for processing time-series data to extract feature vectors 
just by one-time sampling, which can offer robust and simple waveform recognition. © 2022 The 
Author(s)  

 
1. Introduction 

Digital processors are facing energy and speed bottleneck with transistor technology approaching the physical limit. 
On the other hand, in future highly interconnected society, large amounts of analog signals need to be processed and 
recognized in high speed, low latency, and low power. It is becoming more and more challenging to fulfill this 
requirement for traditional digital processors. To analyze time series signals by digital processors, the signals need 
to be sampled to digital ones with very high resolution, which causes large latency and consumes a lot of energy. 
Recently, novel computing systems utilizing optics/photonics have been demonstrated to accelerate signal 
processing and artificial intelligent inference, such as optical neural network [1,2] and reservoir computing [3,4]. 
Electrical-photonic heterogeneous architecture could be one of promising solutions for future processors [5]. In this 
work, we propose a Hopfield-like electro-optical recurrent network by adding an optical-electrical (OE) feedback to 
our previous projection-based silicon photonic classifier circuits [6] and demonstrate a prototype of this architecture 
by using home-made feedback circuits. This architecture does not need continuous and fine sampling for temporal 
waveforms and can offer robust recognition just by one-time data sampling at the end of signal. We verify the role 
of OE feedback in recognizing the time-series Mel Frequency Cepstral Coefficients (MFCC) [7] of Japanese vowels. 
This work could enable a high-efficient OE hybrid hardware for directly analyzing temporal analog signal. 

2.  Architecture and Principle 

Figure 1(a) shows the proposed OE recurrent network architecture, in which the photonic circuits is using our 
previously reported projection-based photonic classifier [6], which consists of Mach-Zehnder interferometers (MZI) 
and phase shifters (PS). The optical outputs are converted to electrical signals by photodetectors (PD) and the four 
electrical signals are feedbacked to four MZIs via amplifiers (Amp.), forming OE loops. The MZI provides EO 
nonlinearity. The analog data is input to a MZI with a continuous-wave laser input, and the signals detected by PDs  
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Fig. 1. (a) Silicon photonic OE recurrent network architecture. (b) Continuous Hopfield-like recurrent network principle.  

are connected to the result y by using the readout coefficient wij which is done by electronics. The OE loop follows 
the continuous Hopfield-like recurrent network principle [8] as shown in Fig. 1(b). The output of each MZI (works 
as neurons) is feedbacked to other three MZIs and itself, depending on the state of the vector-matrix multiplication 
(VMM) which is implemented by the MZI mesh. The Hopfield-like recurrent network can be trained to an 
associative memory mode corresponding to the input waveforms. This current architecture can be trained to 
remember four waveforms which are marked by a four-element feature vector of the optical output at the end of 
signal input. For some simple tasks, this feature vector can directly give out the results of classification, while for 
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complex tasks, this vector can be used as the input for a linear transformation to give out the results like that done in 
photonic reservoir computing [3,4]. This Hopfield-like network offers robust waveform recognition due to the 
memory effect. Even though the input waveform deviates from its learned one, it can be correctly recognized. 

For easy understanding, we perform recognition for bit sequences by simulation to explain the principle. The 
input data has a unit of  and the feedback amplifier’s gain coefficient (convert optical powers to phase shift) is set 
to 1.5. The loop delay can be a tunable parameter and one bit delay is assumed. Here, no readout coefficients are 
used to understand the recurrent architecture itself. We consider four patterns: all-one (11…11), all-zero (00…00), 
half-zero/half-one (00…11...), half-one/half-zero (11…00...), with the bit lengths of 2, 4, 8, and 16. Firstly, Fig. 2(a) 
shows the OE loop induced responses of all ports for the 16 bit all-one pattern under the initial random phase 
distribution (before training). The network can self-consistently converges to a steady state after 4-5 OE loops when 
continuously input the same signal. Secondly, we train the network to distinguish above four patterns by just 
sampling the optical output at the last bit. We use the forward propagation training algorithm here [6]. Each pattern 
will have an output power distribution (feature vector) at four PDs, and we use the index of maximum-power 
position to mark each pattern. Obviously, if without OE loops, only by sampling the last output, it is no way to 
distinguish all-one and half-zero/half-one, and all-zero and half-one/half-zero as well, because their last bits are 
same. However, with OE loops, we can distinguish these patterns with 100% accuracy up to the 8-bit length as seen 
in Fig. 2(b). If the length of continuous identical bits is much longer than the response time given in Fig. 2(a), it will 
fail to distinguish the patterns because the influence from long-term history information will become negligible, as 
shown by the 16-bit case in Fig. 2(b). The results of temporal responses for 4-bit patterns after training are shown in 
Figs. 2(c)-2(f). For each pattern, the system maps the maximum power to the respective ports of 1, 2, 3, 4 at the last 
bit (indicated by colored arrows), indicating the pattern separation. Finally, we verify the recognition robustness by 
deviating the bit pattern to analog ones by 20% to the maximum. Using the learned model from training for Figs. 
2(c)-2(f), we input these deviated patterns for verification and obtain the results in Figs. 2(g)-2(j). Comparing Figs. 
2(g)-2(j) to Figs. 2(c)-2(f), respectively, we notice that the deviated analog patterns can still be correctly recognized. 
The Hopfield-like recurrent network can be trained to build an associative mode to memorize four patterns. Even 
though the input deviates from its training data, the learned network state tries to recover its output to that of its 
closest training data, offering robust pattern recognition. 
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Fig. 2. (a) OE loop induced optical responses of all eight ports for an input of 16 bits of one under random phase distribution (before 

training). (b) Classification accuracy in relation of bit lengths for the 4 patterns: all-one, all-zero, half-zero/half-one, half-one/half-zero. 
(c)-(f) Temporal responses of four 4 bits pattern at four ports (corresponding to the PD number in the up-to-down order) after training. 

(g)-(j) Verified temporal responses of four analog signals deviated from the trained digital ones by 20% to the maximum. 

3.  Experimental Results of Japanese Vowel Recognition 

To demonstrate the prototype of the architecture in Fig. 1(a), we built up the experimental setup in Fig. 3(a). The on-
chip photonic circuit in Fig. 1(a) is the silicon photonic chip in Fig. 3(a) which was explained in [6]. The feedback 
circuit is home made on a bread board, in which the signals from PD are combined with those from direct-current 
(DC) sources by operational amplifiers. The combined signals are feedbacked to four MZIs. We control all phase 
shifters by two 40-channel DC sources and use an arbitrary function generator (AFG) and oscilloscope (OSC) for 
data input and result readout, respectively. Since the fiber and cable are long, the OE loop time is about 20 s. This 
time is related to signal coding and can be greatly shorten if adopting an integrated form. The current setup is just 
for proof-of-concept demonstration and ideally it should be realized with on-chip PD integrated and feedback 
circuits packaged. The laser was set to the 1530 nm wavelength and TE polarization. The forward propagation 
training algorithm was adopted to train the chip in this experiment and the parameters were same as those used in [6]. 

W3G.2 OFC 2023 © Optica Publishing Group 2023

Disclaimer: Preliminary paper, subject to publisher revision



Next, we perform Japanese vowel classification and recognition using the setup in Fig. 3(a) and readout 
coefficients (off chip) in Fig. 1(a). The whole system has 62 training parameters (46 on chip + 16 off chip) in total. 
The PD output was sampled only one time after finishing data input and normalized before linear transformation. 
The output layer used the Softmax normalization. Since the raw voice data contain lots of redundant information [1], 
it is rare to directly use the raw waveforms for recognition tasks in traditional recurrent neural networks (RNN) [7]. 
The traditional RNN usually takes the preprocessed data such as MFCC coefficients [7] as the network input. We 
treat Japanese vowels similarly to obtain the time dependent MFCC coefficients for each vowel and input them into 
the MZI after being coded by AFG. We use the Japanese vowel dataset in [9] and perform recognition for four 
vowels (“ha”, “hi”, “hu”, “he”) as seen in Fig. 3(b). For each vowel, four MFCC components of 11 time-sections are 
extracted for the colored parts in raw waveforms and flattened to the temporal data. These data are recoded to ~250 
kHz by AFG, thus, the OE loop has a ~5-bit delay. For comparison, simulation was also done by assuming a 5-bit 
delay. For simulation, we used the vowels spoken by 28 persons from 21 to 56 years old. Thus, there are 118 vowels 
in total, 80 used for the train set and 38 for the test set. For experiment, we used 64 vowels (40 for the train and 24 
for the test) to save the training time (limited by data input and readout). Fig. 3(c) shows the simulated result of 
recognition accuracy. Without OE loops (only using the last data point for training), the accuracy is about 56.3%. It 
can be enhanced by 20-30% to 86.3% for the train and 78.1% for the test if using OE loops. We performed two 
times training experiments and obtained the accuracies of about 75.0-82.5% and 66.7-70.8% for the train and test 
sets, respectively, as shown in Fig. 3(d), with only 62 parameters. The experimental accuracies are several percent 
lower than the simulated ones, which may be related to the system stability due to a long loop and jumper cables. 
The current experimental setup can be further improved in future from various aspects such as stability, amplifier 
gain tuning, integrated circuits, and packaging to shorten the loop time for high-speed waveform processing. 
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Fig. 3. (a) Experimental setup of the OE recurrent network using home-made feedback circuits. (b) An example of raw vowel waveform in 

the dataset [9] and the extracted temporal MFCC coefficients for each vowel. (c) Simulated training curves of accuracy with and without OE 
loop. (d) Experimental training curves of accuracy using the setup in (a) which takes temporal MFCC waveforms in (b) as the input analog data. 

4.  Summary 

We proposed a Hopfield-like OE recurrent network and demonstrated its prototype using silicon photonic circuits. 
Using this prototype, we experimentally demonstrated recognition for four Japanese vowels by using MFCC as the 
input analog data, evidencing the role of OE recurrent network in recognizing time-series signal. 
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