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Abstract: We experimentally demonstrate distributed denial of service (DDOS) attack 
identification using Deep Learning over a photonic neuromorphic engine that supports both input 
signal and weight update at 50 GHz, reporting a Cohen’s κ-score of 0.636. 

 
1. Introduction 

Cybersecurity in Data Centers (DCs) is faced with a challenging operational framework as the explosive growth of 
intra-DC traffic brings an increased appeal in various types of malicious attacks [1]. The massive amount of data 
flowing through a high number of servers and switches within today’s hyperscale DCs is forcing threat detection 
mechanisms to comply with a new set of requirements: i) real-time threat detection, implying that packet inspection 
has to be processed at ultra-high speeds, ii) threat detection as early as possible within the route of the malicious 
packets, implying that every DC node has to be equipped with a powerful cybersecurity toolkit [2]. This new 
operational framework has forced major DC equipment vendors to migrate from traditional threat detection 
mechanisms [3] into Artificial Intelligence (AI) and Deep Neural Network (DNN)-based methods for the 
identification of malicious attacks [4]. This paradigm shift, aims to utilize the proven credentials of AI and DNNs in 
generalizing and classifying patterns beyond static rule sets, allowing them to detect and react to multiple threats 
immediately [5]. As such, industry is steering its efforts towards the development of Deep Learning (DL)-assisted 
converged look-aside accelerators [4] that can perform real-time inference across vast amounts of cybersecurity data, 
mainly relying on state-of-the-art powerful GPUs and/or TPUs for realizing tiled matrix multiplication (TMM) and 
implement DNNs with dimensions significantly higher than the available hardware [6]. However, modern digital AI 
engines can hardly perform at clock-frequencies higher than ~2 GHz [7],[8]; with processing speed being one of the 
decisive factors for real-time detection, neuromorphic photonic accelerator technologies [9]-[13] emerge as ideal 
candidates for penetrating the DC cybersecurity domain, provided, however, that they can i) demarcate from their 
current static into a dynamic and high-speed weighting technology in order to support TMM and DNNs with a large 
number of NN parameters, ii) successfully adapt to threat detection AI algorithms and yield high-accuracy operation. 

In this paper, we present, for the first time to the best of our knowledge, the successful silicon photonic DNN-
based detection of distributed denial of service (DDoS) attacks within DC traffic at an ultra-fast operational rate of 
50 GHz. We utilize a neuromorphic silicon photonic (SiPho) engine with TMM capabilities [13] and increase its 
speed credentials to 50 GHz towards demonstrating the execution of a DDOS-detecting DNN with 64 trainable 
parameters over a single SiPho neuron hardware, highlighting this way the technology credentials to perform over 
complex and large cybersecurity-oriented neural networks (NNs) and datasets. The TMM-based inference of a DC 
traffic dataset was realized experimentally with an accuracy, expressed with the Cohen’s κ-score metric [14], equal 
to 0.636, reduced by only 0.064 compared to the software acquired κ-score value. 

2. DDoS attack identification and experimental testbed 
DDoS attacks comprise a pressing threat to the security and integrity of computer networks and DC infrastructures, 
provoking unavailability of resources for a considerable amount of time. A DDoS attack is created by a malicious 
user via the transmission of a great abundance of packets into a target DC server, as visualized in Fig. 1(a). With the 
current industrial roadmap for DC cybersecurity extending along the use of state-of-the-art electronic converged 
accelerators [4]  within a smart network interface card (SmartNIC), DDOS attacks are expected to be detected at 
real-time through AI-based methods [15], [16] executed over digital electronic DL accelerators. Here we propose to 
upgrade the speed capabilities of this cybersecurity hardware by investing in a photonic NN (PNN) accelerator that 
can communicate with an electronic data processing unit (DPU), as illustrated in Fig. 1(b). The DPU receives and 
pre-processes telemetry data and after a tensor transformation, feeds them into the PNN to perform the inspection of 
the ingress traffic at high clock frequencies. 
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In view of evaluating the PNN accelerator classification performance, we employed the SiPho processor 
depicted in Fig. 1(c) and propose to prevent DDoS attacks during the reconnaissance attack (RA) phase, when the 
attacker tries to determine critical information about the target’s configuration. The fabricated chip deploys 
high-speed 50 um long SiGe EAMs both for the input and the weight amplitude imprinting. We simulated RAs using 
the publicly available software tool ddosflowgen [17] and created a dataset with six features that correspond to the 
statistics of the port scanning telemetry data (TCP flags SYN, FIN and RST) retrieved within 3 ms, with a slice of 
the resulting time-series being shown in Fig. 1(d). Thereafter, we trained the NN, illustrated in Fig. 1(e), to classify 
these data into benign and malicious. Specifically, the 6 features of the telemetry data comprise the input of the fully 
connected 6-8-2 NN, that uses the softmax function to make the RA detection. The NN inference was realized via 
time division multiplexing (TDM) and optical TMM, following the procedure described in [13]. Fig. 1(f) presents 
an indicative visualization of the employed methodology in one of the 8 fully-connected, 6-input neurons of 
Layer #1, when utilizing the integrated 2:1 neuron and TDM at both the input and weight signal sequences. In this 
specific neural layer, ඃlogே௢,௔௫௢௡௦(𝑁𝑜, 𝑖𝑛𝑝𝑢𝑡𝑠)ඇ = ⌈logଶ(6)⌉ = 3 distinct phases are required for the calculation of 
the weighted summations, where 𝑁𝑜, 𝑎𝑥𝑜𝑛𝑠 and 𝑁𝑜, 𝑖𝑛𝑝𝑢𝑡𝑠 correspond to the number of axons the hardware 
deploys and the number of inputs of each neuron, respectively. In the first phase, the 6 inputs x1-x6, comprising 
N samples each, along with their respective weights, w1-w6, were time multiplexed to generate the xa,wa and xb,wb 
data streams [13]. A pictorial representation of the multiplexed signals of the 1st phase is illustrated in the bottom of 
Fig. 1(f). The resulting partial sums are added in the remaining phases in the photonic hardware by tuning the weight 
values into 1. The experimental setup employed for the validation of the proposed NN is illustrated in Fig. 2(a). A 
light beam at 1560 nm was injected to the SiPho chip via a grating coupler. An arbitrary waveform generator was 
employed to generate the multiplexed xa, wa and xb, wb sequences at 16 and 50 GHz clock frequencies, with each 
constituent x1-x6 input signal comprising 500 samples. The multiplexed signals, after RF amplification, were injected 
into the respective EAMs with a Vpp of approximately 3 Volts. The resulting multiplexed weighted summation 
signals obtained at the chip output were converted to the electronic domain via a 70 GHz photodiode and captured 
via a 160 Gsa/s real time oscilloscope. Followingly, the received signal was demultiplexed to realize the individual 

 
Fig. 1. (a) Pictorial representation of a DDoS attack in a DC rack. (b) Proposed SmartNIC architecture composing of a data processing unit 
(DPU) and a photonic NN (PNN) accelerator. (c) PNN accelerator employing high-bandwidth EAMs for NN input and weight data 
encoding. (d) Port-scanned telemetry data time-trace (e) NN topology for the DDoS attacks identification. (f) Methodology employed for 
the implementation of a neuron of the 1st neural layer via TDM. 

 
Fig. 2. (a) Experimental setup (b) Digital signal processing stack utilized for interfacing the DNN with the photonic hardware.  
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weighted summations and got forwarded to the next phase or layer of the NN after electronic application of the non-
linear activation function. Finally, the digital signal processing stack, depicted in Fig. 2(b), was employed during the 
experimental process. 

3. Experimental Results 
Figure 3(a)-(c) depict the experimentally derived weighted summation traces of the first neural layer, denoted 

with blue lines, along with the respective traces obtained when executed over software, denoted with orange lines. 
As expected, the mean squared error (MSE) of the weighted sum increases with the phase rank within a single layer, 
due to noise accumulation. A detailed overview of the MSE along all 54 (40 at Layer #1 and 14 at Layer #2) weighted 
sums and its evolution through different phases and layers is shown in Fig. 3(d). The MSE increases with the phase 
rank within a single layer but drops from ~3% to ~0.8% when entering Layer #2, being the result of the non-linear 
sigmoid activation function following Phase 3 of Layer #1. Figure 3(e),(f) illustrate the experimentally derived 
confusion matrices when the PNN was operated at 16 and 50 GHz, respectively, while Fig. 3(g) depicts the software 
acquired confusion matrix. Taking into account the imbalanced dataset where only 20 out of 500 samples correspond 
to malicious packets, the κ-score metric was employed to quantify the classification accuracy. As shown in Fig. 3(h), 
the classification of the malicious traffic at 16 and 50 GHz revealed a κ-score of 0.688 and 0.636, respectively with 
minor degradations of only 0.012 and 0.064 with respect to the software-derived performance. Finally, the SNR 
values of the linear summations emerging from the PNN were measured equal to 14.1 dB and 11.2 dB, respectively. 
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Fig. 3. (a)-(c) Time traces of the experimental (blue) and reference (orange) signals of the weighted summations of the 3 phases of Layer #1. 
(d) MSE distribution along Layer #1, Layer #2 for all 3 TDM Phases. (e),(f) Experimentally obtained confusion matrices when the PNN was 
operating at 16 and 50 GHz, respectively. (g) The respective software acquired confusion matrix, (h) Cohen’s κ-score and SNR performance 
calculated for the operating data rates. 
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