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Abstract: We demonstrate InGaAs/InP balanced photodiodes on Si3N4 waveguides with
record-high 3-dB bandwidth of 30 GHz, 0.72 A/W responsivity, and high common mode
rejection ratio (CMRR) of 26 dB at 30 GHz. © 2022 The Author(s)

1. Introduction

As a CMOS-compatible platform, silicon nitride Si3N4 photonics has attracted significant research efforts over
the past years. Si3N4 waveguides can have ultra-low propagation loss and high optical power handling capability,
and numerous high-performance passive and nonlinear photonic components have already been demonstrated
[1, 2]. Recently, progress in III-V/Si3Ny4 heterogeneous integration has also enabled active photonic components
including high-speed photodiodes (PDs) [2-8].

For heterodyne detection schemes and applications that require enhanced signal-to-noise ratio, balanced PDs
are beneficial since they can suppress common mode noise. In this paper, we demonstrate a heterogeneously
integrated balanced photodetector on Si3Ny4 with a record-high bandwidth of 30 GHz and a high CMRR of 26 dB.

2. Experimental
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Fig. 1: (a) Cross section with epitaxial layer structure, (b) fabricated balanced PDs on SizN, waveguides.

The epitaxial layer structure and cross section of our balanced PDs are shown in Fig. 1 (a). The waveguide
consists of a Si3Ny core with 400-nm thickness, 2-um width and 100-nm thick silica cladding. In contrast to our
previous work [6], we used a modified uni-traveling carrier PD structure that results in n-down after bonding. This
design is advantageous since high n-type doping levels (> 10'°cm3) can be reached in the InP contact layer which
ensures low sheet resistance [9]. The PD fabrication starts with III-V die to Si3N4 wafer bonding using SU-8 in
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a low-temperature adhesive bonding process [6]. The III-V substrate is then removed by selective wet etching
and double-mesa PDs are formed by a combination of dry and and wet etching processes. Radio frequency (RF)
probing pads are deposited and connected with the contact metals by electro-plated air-bridges. Fig, 1 (b) shows a
fabricated balanced photodetector with its two Si3N4 input waveguides.

Fig. 2 (a) shows the I-V curves of a pair of balanced PDs with dark currents below 100 nA at 3 V reverse bias.
Considering 1.5 dB fiber-chip coupling loss, the (internal) responsivity was measured to be 0.72 A/W at 1550 nm
wavelength.
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Fig. 2: (a) Dark I-V curves and (b) frequency response.

The frequency response was measured in differential mode using an optical heterodyne setup with nearly
100% modulation depth (Fig. 3). The optical signal was split into two branches and we used an optical delay line
to adjust the signal phase before reaching the lensed fiber array. The PDs were reverse-biased at 3 V by two DC
voltage sources through a custom-designed RF probe with integrated capacitors. The measured 3-dB bandwidth
of a balanced PD pair, each with an active area of 200 um?, is 30 GHz (Fig. 2 (b)). Based on the total capacitance
of 94 fF and a series resistance of 7 Q2 we estimated a resistance-capacitance (RC) bandwidth of 29.7 GHz which
indicates that our balanced photodetector is RC-limited. We believe that the bandwidth performance can be further
improved by decreasing the PD areas.
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Fig. 3: Experimental setups for bandwidth and CMRR measurements (ECL: external cavity laser, PC: polarization
control, PSG: RF signal generator, MZM: Mach-Zehnder modulator, EDFA: erbium doped fiber amplifier, Attn:
optical attenuator, DUT: device under test, ESA: electrical spectrum analyzer)

Another key parameter of a balanced photodetector is CMRR, i.e. the ratio of differential-mode RF output
power to common-mode output RF power. To measure CMRR, the optical heterodyne setup was replaced with
single ECL laser and a MZM driven by an RF signal generator. Fig. 4 (a) and (b) show the differential and common
mode signals as measured with the ESA. High CMRRs of 39 dB and 26 dB were achieved at 20 GHz and 30 GHz,
respectively.
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Fig. 4: CMRR at (a) 20 GHz, and (b) 30 GHz.

3. Summary

High-speed balanced PDs heterogeneously integrated onto Si3N4 waveguides were fabricated and character-
ized. The balanced PDs show an RC-limited bandwidth of 30 GHz and high CMRR of over 26 dB. The reported
device has potential applications in photonic integrated circuits that require improved noise performance and
large bandwidth.
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