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Abstract: Flip-chip bonding APDs with 14m window diameters are demonstrated.  Wide-bandwidth 

(36GHz), high-responsivity (3.4A/W), low dark current (175nA) and high MMW output power (-1dBm at 

40GHz) can be achieved simultaneously with 12.5mA Isat under 0.9Vbr.           
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I. Introduction  
The bandwidth hungry in modern 5G and cloud communication networks strongly drives the developments of 

bandwidth capacity for data communication, which migrates from 400 to 800 Gbit/sec. In addition to the intensity 

modulation and direct detection (IMDD) scheme, coherent communication schemes have become an alternative 

solution for >100 Gbit/sec data communication [1]. In a coherent receiver-end, the photodiode (PDs) or avalanche 

photodiodes (APDs) need to sustain high-speed and high-linearity performance under strong (~mW) optical local 

oscillator (LO) pumping powers to ensure high sensitivity performance [2,3]. As compared to the p-i-n PD counterparts, 

the APD based receiver has the benefit of higher sensivity (responsivity) with less required optical LO pumping power 

[3,4]. In order to enhance the saturation power and speed of APDs, both the absorption and multiplication layer 

thicknesses must be aggressively downscaled, which limits its responsivity performance for wide bandwidth 

performance (>30 GHz) [5,6] and accompanies with a pronounced leakage current (~1 A) [5]. Waveguide type APD 

structure (WGAPD) has been demonstrated to further extend the bandwidth-responsivity product in APD with thin 

active layers [3,7]. Nevertheless, the alignment tolerance for device package of WGAPD is usually much less than that 

of the vertical-illuminated counterpart and the significant insertion loss of passive optical components on photonic 

integrated circuits (PICs) platform for monolithic integration with WGAPD remains a challenge [3,7]. Backside-

illuminated structure with flip-chip bonding package is an alternative solution to relax the low-responsivity problem 

in vertical-illuminated APD [8]. With such package, the topmost metal contact in APD can serve as the reflector and 

enhance the photo-absorption process. However, as compared to the top-illuminated reference, the flip-chip bonded 

APD usually exhibits a less bandwidth due to the additional parasitic capacitance after package. Some alternative 

solutions, such as refracting facet [9] or installing a 45o mirror, which is beneath the APD chip [6], have thus been 

demonstrated to fold the optical absorption path and eliminate the flip-chip bonding process. Nevertheless, the flip-

chip bonding package integrated with a well fabricated substrate lens is still a very attractive solution due to that it 

offers the largest alignment tolerance and minimum size after co-package with low-loss free space optics among all 

the reported PD/APD packaging technologies [8]. In this work, we demonstrate a novel In0.52Al0.48As backside-

illuminated APDs with flip-chip bonding package and state-of-the-art performances. By optimizing the layouts for 

bonding process, such device can simultaneously exhibit superior bandwidth (36 vs. 31 GHz) and responsivity (3.4 vs. 

2.3 A/W) than those of top-illuminated reference under 0.9 Vbr operation and attain a high millimeter wave output 

power (-1 dBm at 40 GHz) and current (12.5 mA at +8.8 dBm optical power).                                                       

II. Device Structure  
Figure 1 depicts the conceptual cross-sectional view of fabricated device structure. In order to release the trade-offs 

among speed, dark current, and responsivity, the dual M-layer structure is adopted [4,5]. By dividing the total M-layer 

thickness into two parts (1st and 2nd M-layer) with an additional charge control layer, a stepped electric field profile 

was introduced in the M-layer to attain high multiplication gain and smaller avalanche delay time. A composite charge 

layer (In0.52Al0.48As/InP) design is adopted to ensure that the electric field at the side wall of the bottom (2nd) M-layer 

becomes exactly zero and the phenomenon of edge breakdown is suppressed [10]. Here, three kinds of APDs were 

fabricated and investigated. Device A and B are APDs with two different layouts of AlN carriers for flip-chip bonding 

packages and C is the reference one with top-illuminated structure. All of them share the same epi-layer structure and 

same active window diameter as 14 m, as shown in Figure 1. Figure 2 (a) to (d) shows the photos of metal pads on 

AlN carrier, top-view of devices B before flip-chip bonding and after flip-chip bonding, and device C respectively. 
Compared with device B, in device A, we have further optimized its layouts of metal pads on AlN carrier to improve 

the O-E bandwidth.                                     

III.Measurement Result: 

Figure 3(a) to (c) shows the measured bias-dependent dark current and photocurrent subjected to different optical 
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pumping power at optical wavelength of 1.31 m for devices (A to C). The measured breakdown voltage (Vbr) is -26 

V. Under low optical illumination power values (~10 W) at 0.9 Vbr, the measured responsivity is around 3.4, 3.1 and 

2.3 A/W for the devices A to C, respectively. The gain versus bias voltages of our device under different optical 

pumping power (1 to1000 W) are also provided in this figure for reference. As can be seen, the devices with flip-chip 

bonding package can have a higher responsivity (3.4 vs. 2.3 A/W) due to the fold of optical absorption path as expected. 

Moreover, under the same values of optical pumping power (-20 dBm), the maximum gain of device A is more than 

seven times larger (98 vs. 14 A/W [11]) than that of reported for its III-V [6] and Si-Ge [11] counterparts.  This can 

be attributed to the lower dark current and more pronounced avalanche process facilitated by our dual M-layer design.  

Figures 4 and 5 shows the measured bias-dependent O-E frequency responses of all three devices under low (10 W) 

and high (1 mW) optical pumping power at 1.55 m wavelength, respectively. Compared with the reference device C, 

device B suffers the degradation in O-E bandwidth (27 vs. 30 GHz) under the same bias as 0.9 Vbr due to the flip-chip 

bonding package induced parasitic capacitance as discussed. Nevertheless, device A with an optimized flip-chip 

bonding layout can have not only the highest responsivity (3.4 vs. 3.1 and 2.3 A/W) but also widest 3-dB bandwidths 

(36 vs. 27 and 30 GHz) among these three devices. Moreover, compared with the high-performance Si/Ge counterpart 

APDs with the same 14 m window size [11], which is operated at around the same responsivity 3.5 (6.5) A/W, our 

demonstrated device A can have a superior 3-dB O-E bandwidth (36 (28) vs. 28 (22) GHz) [7].  On the other hand, 

under high (1 mW) optical power illuminations, these three devices (A to C) can maintain invariant 3-dB O-E 

bandwidths as 36, 27 and 30 GHz at 0.9 Vbr, respectively. Such excellent high-power performance implies a good 

linearity and wide dynamic range of our demonstrated APDs. Figure 6 shows the photo-generated RF output saturation 

power measured with the heterodyne beating setup at a beating frequency of 40 GHz for device A and 30 GHz for 

devices B and C. All of them exhibit very close values of saturation current at 12 mA and maximum output RF power 

as -1 dBm under 0.9 Vbr. This corresponds to a high launched optical power at +8.8 dBm for device A. Figure 7 shows 

the measured 3-dB bandwidths versus multiplication gain (MG) of devices A to C. The values of gain-bandwidth 

product (GBP) under MG=10 and extremely high gain of these three devices are all specified.  We can clearly that 

with our optimized flip-chip bonding layout, we can have improvements in GBPs under high-sensivity operation 

(MG=10) and with an unprecedented large maximum GBP up to 1 THz. Table 1 shows the benchmark of device A and 

the other reported high-speed APDs. Thanks to the novel dual M-layer design with an optimized flip-chip bonding 

package in device A, we can attain the lowest dark current, highest bandwidth-responsivity product, and largest 

overload and saturation optical power among these reported devices.   

 

 

 

 

   

   
 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conceptual cross-sectional views of the demonstrated. 

devices.        

 

Figure 3. (a)-(c) The measured current voltage characteristic under different optical powers of the devices A to C at the 1.31 m wavelength. 

 

Figure 4. (a)-(c) The measured bias dependent O-E frequency responses under low optical pumping power 10 W at 1.55 m wavelength 
for devices A and C.     
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Figure 2. (a)-(d) The top-view of the fabricated Device B and C.        
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Summary:  

In conclusion, by combing our dual M-layer design with our advanced flip-chip bonding package, we demonstrated a 

novel APD, which can simultaneously exhibit low dark current (175 nA), a wide 3-dB bandwidth at 36 GHz, high 

responsivity 3.4 A/W, high saturation current as 12 mA, and a high MMW output power (-1 dBm at 40 GHz) under 

the operation 0.9 Vbr. 
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    Table 1 :- COMPARISON FOR DIFFERENT TYPES OF HIGH 

PERFORMANCE APDs  

    

Figure 5. (a)-(c) The measured bias dependent O-E frequency responses under high optical pumping power 1 mW at 1.55 m wavelength 

for devices A and C.     

Figure 6 (a)-(c) Measured photo generated RF power versus photocurrent for devices A to C under different Vbr. 
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Figure 7. The measured 3-dB O-E bandwidths vs multiplication 

gain of APDs (A to C) at low (10 W) optical pumping power.   
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Parameter NTT
SiFotonics
technology

SEDI, 

JAPAN
This work

Reference 6 11 7

Type
Backside 

illuminated

Topside-illuminated 
(Reflector on 

Backside)
Waveguide 

Backside-
illuminated

Window Size 14 μm 20 μm 14 μm
Dark Current 

(0.9 Vbr)
2 μA 0.9 μA 8μA 175 nA

Responsivity 1.95 A/W 3.53 (6.5) A/W 3.6 (9) A/W 3.4 (6.52) A/W
Bandwidth 28 GHz 28 (22) GHz 38(24) GHz 36 (28) GHz

Optical Saturation 
Power (Overload)

-6.3 dBm
(Saturation)

< 0 dBm
(Overload)

-
8.8 dBm

(Saturation)
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