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Abstract: We firstly demonstrated an active learning (AL)-based classifier for monitoring the 
entropy/rate of the PCS-based rate-flexible TWDM-CPON. For an 80-km 350-Gb/s/λ~450-Gb/s/λ 
downstream, AL-based scheme achieves 100%/95% entropy/rate identification accuracies 
corresponding to 25/5 Gbps tuning steps. © 2022 The Author(s) 

 
1. Introduction 

With the explosive growth of the information scale of Internet applications such as cloud computing, big data-based 
artificial intelligence (AI), and augmented reality/virtual reality (AR/VR) streaming media, the previous access 
network facilities have urgently needed upgrading to meet the requirements of ultra-high-speed and rate-flexible 
passive optical network (PON) [1]. On the one hand, with the increase in rate and performance requirements, the 
number of access optical network units (ONUs) also increases over a ~80-km metro access ring from an optical line 
terminal (OLT) [2]. The development of simplified coherent detection technology reduces the cost and promotes the 
development of coherent optical communication to medium and short distances. Coherent access such as >100-G 
time-wavelength division multiplexing (TWDM) coherent PON (CPON) is considered as next-generation 
mainstream PON architecture [3, 4].  

On the other hand, more adaptive and flexible rate changes must be developed to accommodate different 
channels and access points. Previous subcarrier division scheme in the frequency domain has achieved remarkable 
results in rate adaptation [5]. While probabilistic constellation shaping-based (PCS-based) with tunable spectral 
efficiency (SE) characteristics enable a more continuous rate-adaptative scheme by varying the entropy of the 
transmitted signal [6-8]. Thus, combining PCS with variable entropy and TWDM-CPON can not only improve 
capacity and performance but also flexibly allocate spectrum for large-scale access users. Regulating rate through 
time-varying entropy requires an entropy/rate monitoring scheme at the receiver. However, there is no mechanism 
and discussion to monitor the changing rate/entropy in PCS-based optical systems or networks.  

In this work, a rate-flexible TWDM-CPON setup is presented with a 350-Gb/s/λ ~ 450-Gb/s/λ for a specific 
ONU group. The minimum rate tunable rate step is single-polarized 5 Gbps at 50 Gbaud, corresponding to an 
entropy step of 0.1. For monitoring the entropy/rate varies in the TWDM-CPON, for the first time, an active 
learning (AL)-based image classifier is proposed, designed, and verified at the post-digital signal processing (DSP) 
of the coherent receiver after 80-km transmission. In addition, to illustrate the trade-off between classification 
accuracy and complexity, we compared different image classifiers based on different working principles. 

2.  Principles, Architecture and Experimental Setup 

 
Fig. 1. The 350-Gb/s/λ ~450-Gb/s/λ downstream experimental setup for PCS-based rate-flexible TWDM-CPON with image classifier-based 
entropy/rate monitoring. Inset figures: (a) The frame structure of flexible rate by time-variant entropy for different ONUs; (b) General 
performance comparisons between training data volume and classification accuracy with classifiers based on different principles in our work.  
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Figure 1 illustrates the schematic of the proposed entropy-regulated rate-flexible TWDM-CPON architecture and 
downstream experimental setup. At the transmitter (Tx.), the rate-flexible signal is generated by tuning the entropy 
value at different continuous time slots. The specific digital signal processing (DSP) for 4-channel dual-polarized IQ 
signals include PCS-64-QAM mapping, upsampling to 2 sps, RRC pulse shaping, resampling, and digital-to-analog 
converter (DAC), respectively. The electrical signal and the carrier lightwave from micro-integrable tunable laser 
assembly (micro-ITLA) overlapped inside a dual-polarized IQ modulator (DP-IQ Mod.), and they passed through an 
80-km standard single-mode fiber (SSMF). The receiving optical power level to different ONUs can be changed by 
a variable optical attenuator (VOA). The inset Figure 1(a) shows a time frame stream with various entropy-regulated 
rates, which is packaged and delivered to all the ONUs. At the receiver (Rx.), a micro-ICR and an ADC are set to 
receive the signal, while the demodulation DSP can be divided into a signal recovery part and an entropy 
identification part. The converted electrical signal is firstly front-end corrected. Then analog-to-digital converter 
(ADC) de-skew, resampling to 2 sps, chromatic dispersion (CD) compensation, synchronization, matched filter, 
multi-input multi-output (MIMO) equalization, downsampling, and carrier phase recovery are executed sequentially. 
Then, the classifier will determine whether the entropy/rate has changed between each time slot according to the 
point distribution of the acquired constellation, and further define the specific value of the entropy/rate.�

The inset of Fig. 1(b) is a general performance comparison of image classifiers based on different principles, and 
the red dotted line is the designed optimized direction. The trade-off among computational complexity, recognition 
accuracy, and data overhead is the criteria leading to proposing AL-based classifiers. Generally, some deep learning 
(DL)-based classified schemes ask to collect large amounts of data to train networks and maintain accuracy. 
Machine learning (ML)-based schemes are a compromise, which can get better recognition and maintain a small 
data overhead. In addition, the methods based on numerical calculation require only a few data samples for reference, 
but the recognition accuracy is relatively low. Next, the proposed AL scheme is further compared with deep neural 
network (DNN), support vector machine (SVM), and simply normalized cross-correlation (NCC) calculation.�

3.  Results and Discussions 

 
Fig. 2. System performances of single ONU with 1560 nm at 50.12 Gbaud: (a) SNR, (b) BER, (c) GMI, and (d) NGMI versus ROP from -15 
dBm to -22 dBm with entropy varying from 3.5 to 4.5; (Inset figures in (b): the constellation diagrams at ROP of -15 dBm.)  

 
Fig. 3. System performances of multiple ONUs with the wavelength of 1560 nm, 1561 nm and 1562 nm at 50.12 Gbaud at -15 dBm ROP: (a) 
SNR, (b) BER, (c) GMI and (d) NGMI versus various wavelengths with entropy varying from 3.5 to 4.5. 

In our TWDM-CPON setup, different ONUs groups are divided by wavelengths, while within the single ONUs 
group, the single ONU is divided by a 1:3 power splitter. Here, the entropy values are changed among 3.0, 4.0, and 
4.5, corresponding to the rate changing from 350 Gb/s/λ ~ 450 Gb/s/λ with a minimum rate tuning step of 25 
Gb/s/pol./λ. For the specific ONUs group at 1560 nm, as shown in Fig. 2, the communication performance has an 
obvious layering phenomenon with the changing of entropy. In Fig. 2(a), the SNRs decrease with the decreasing of 
the ROP, and at the ROP of -15 dBm, the SNR can reach 16.0238 dB with an entropy of 3.5. The diagram of BERs 
versus ROPs is further shown in Fig. 2(b). The transmitted signals with the entropies of 3.5 and 4.0 are capable of 
reaching the hard-decision forward error correction (HD-FEC) threshold of 3.8×10-3, and the BER values are 
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4.9×10-4 and 1.45×10-3, respectively. Inset figures in Fig. 2(b) are the PCS constellation diagrams of 3.5, 4.0, and 4.5 
at -15 dBm, respectively. The constellation points spread out with increasing entropy. The corresponding 
generalized mutual information (GMI) and normalized generalized mutual information (NGMI) are further 
presented in Fig. 2(c) and Fig. 2(d). For example, at -15-dBm ROP and 1560 nm, the GMI and NGMI are 3.4368 
and 0.9899 at the entropy of 3.5. A further experimental measurement is conducted to demonstrate the stability 
among different ONUs groups at -15 dBm. Three wavelengths of 1560 nm, 1561 nm, and 1562 nm are adopted to 
support three ONUs groups. From Fig. 3(a) and Fig. 3(b), although the SNRs slightly decrease from 1560 nm to 
1562 nm, the BERs performance is fairly consistent and stable across carriers. Similarly, we show the measured 
GMI and NGMI at different entropies and carriers in Fig. 3(c) and Fig. 3(d). 

 
Fig. 4. Classification performances and comparisons: (a) Classification accuracies of various schemes verse different training sample volumes 
from 24 to 240 at an entropy interval of 0.5 (from 3.5 to 4.5) or 0.1 (from 4.5 to 4.7). (b) The confusion matrix of the AL-based scheme at the 
entropy of 0.5 and training sample size of 72 (Coordinates: 3.5, 4.0, 4.5; 92% identification accuracy). (c) The confusion matrix of the AL-based 
scheme at the entropy interval of 0.1 and training sample size of 216 (Coordinates: 4.5, 4.6, 4.7; 98% identification accuracy). 

The overall identification performance is presented in Fig. 4. With few training samples, the AL-based scheme 
can achieve rapid convergence through the query mechanism in Fig. 4(a). At the entropy interval of 0.5 (black 
curve), corresponding to the entropies of 3.5, 4.0, and 4.5, the identification accuracy reaches 100% with only 96 
training samples. Then, a confusion matrix with 92 % identification accuracy is further presented in Fig. 4(b) using 
72 training samples. The abscissa constellation diagrams in Fig. 4(b) are with an entropy of 3.5, 4.0, and 4.5 with 0.5 
intervals, respectively. When the step size of entropy/rate tuning is gradually reduced to 0.1/5 Gbps at 50 Gbaud, 
higher requirements are placed on the performance of the classifier. At 0.1 entropy interval, the AL-based classifier 
was able to improve the recognition accuracy of constellation maps to >91% under 144 training samples. Although 
there are some fluctuations in the curve with the increase in the sample size, it can be maintained above 90%. Next, 
Fig. 4(c) shows a confusion matrix with 98% identification accuracy with 216 training samples among 4.5, 4.6, and 
4.7. In addition, in Fig. 4(a), NCC can reach a ~96% identification accuracy with 24 samples but only works when 
the entropy interval is large and rapidly ineffective as the entropy interval narrows from 0.5 to 0.1. For a finer rate 
tuning, SVM cannot reach a relatively high accuracy at a low training sample, while a DL-based classifier requires a 
large set of training samples with annotations. 

4. Conclusions 

To further increase the data rate and rate flexibility of next-generation PONs, we propose and demonstrate a 350-
Gb/s/λ ~450-Gb/s/λ 80-km TWDM-CPON architecture with rate monitoring. The coherent PON is dynamically 
regulated with time-variant entropy and the transmitted frames allocated to different ONUs can be identified and 
distinguished by the value of entropy. A 0.5/0.1 interval value of entropy is precisely tuned to achieve a 100%/95% 
constellation identification accuracy by an AL-based image classifier, corresponding to rate tuning steps of 25 Gb/s 
and 5 Gb/s at 50 Gband. Due to the query mechanism, the AL-based entropy/rate identification scheme has shown 
advantages over other schemes in the case of a small sample size. Our work provides a powerful rate monitoring 
tool for the next-generation rate-adjustable optical access network. 
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