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Abstract: We exploit the intrinsic advantages of a time and frequency domain digital twin to 

detect degradations and to estimate their severity. Noticeable performance shown for filter 

failures confirms the usefulness of this approach. © 2023 The Authors1 

1. Introduction 

Solutions for optical network failure management have been extensively investigated in the latest years (see, e.g., 

[1]-[3]) as they aim at avoiding the severe consequences that an unexpected service breakdown caused by a hard-

failure can signify for a network operator. Failure management needs to cover: i) the detection of degradations 

(i.e., soft-failures) that do not currently affect the service, before they become hard failures; ii) severity estimation, 

i.e., if they will become hard-failures, when this would happen. Estimating the severity of soft-failure is a useful 

tool to plan maintenance; iii) identification of the root cause, i.e., what type of device/element is causing the 

observed degradation; and iv) localization of device/element in the network. 

Solutions for failure management proposed in the literature are based on specific algorithms that analyze different 

aspects of the signal. For instance, the authors in [1] analyzed the evolution of bit error rate (BER) in the 

transponders, whereas the authors in [2] dealt with filter failures by analyzing the spectrum using optical spectrum 

analyzers (OSA) installed in the intermediate reconfigurable optical add/drop multiplexers (ROADM). The 

authors in [3] provided algorithms based on the analysis of optical signal-to-noise ratio (OSNR). The authors in 

[4] provided a digital twin (DT) framework based on deep neural networks (DNN) to model the propagation of 

optical signals through a lightpath, from the transmitter to the receiver. In our previous work in [5], we extended 

the work in [4] and created a DT that model the propagation of optical signals in both time and frequency domains. 

In this paper, we take advantage of developed models and functions to compare the received signals (Xr) and the 

expected ones generated by the DT (Xe) in the time and frequency domains; we call that function diff(Xr, Xe). We 

propose methods that detect degradations by analyzing the evolution of diff(·) in the time and frequency domains 

and estimate their severity by analyzing the evolution of time domain features. 

2. Time-Frequency Analysis for Failure Management and Use Cases 

Fig. 1 shows an illustrative scenario of a lightpath connecting two remote locations and includes two transponder 

nodes TPA and TPB, n ROADMs and n-1 optical links with erbium-doped fiber amplifier (EDFA) and single 

mode fibers (SMF). We assume that every ROADM consists of two wavelength selective switches (WSS) and 

EDFAs (except the last one). Every optical node is controlled by a local node agent that configures the underlying 

optical devices and collates telemetry data from them, as well as from OSAs in the case of the ROADMs. 

On top of the architecture, a software-defined networking (SDN) controller connects to the node agents and to an 

optical layer DT modeling the data plane. The DT includes (or it has access to): i) a telemetry database (DB), 

where data collected from the data plane is stored. Such data includes spectral measurements collected from the 

OSAs in the ROADMs that the lightpath traverses, as well as optical constellations from the coherent receiver in 

TP B; ii) a model DB that includes DNN models for the optical time domain [4] and analytical models that 

represent filter transfer functions for the frequency domain. With such models, optical propagation through the 

lightpath can be modeled end-to-end in both time and frequency; iii) a sandbox domain, that is used to compose 

the models for the lightpath; and iv) a set of algorithms that analyze the features of the signals received and stored 

in the telemetry DB and compare to those generated by the models in both time and frequency. In this paper, we 

focus on algorithms for degradation detection and severity estimation.  

Two main failure conditions are analyzed: i) one single filter-related failure localized in a WSS of an intermediate 

ROADM; here, two causes of failure are considered: filter shift (FS) and filter tightening (FT). FS or FT failures 

appear at some point in time and its magnitude increases over time; and ii) the transmitter operates at a sub-optimal 

launching power and FS failure appears. Note that such non-ideal network conditions might make the detection 

of the degradation and the estimation of its severity more difficult. 

3. Detection and Severity Estimation  

Algorithm I presents the pseudocode of degradation detection at the frequency domain, which is executed in the 

DT every time that new spectrum Sr sample is received in the telemetry DB from the last OSA in the lightpath. 
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Fig. 1. Overview of the envisioned network scenario. 

A similar algorithm is executed every time that new constellation Cr is available. The algorithm receives: i) the 

models for the lightpath ml that include those for time and frequency domains that were trained in the sandbox 

domain and stored in the model DB; ii) historical DB hl with observations for time and frequency and computed 

diff(·) values; iii) a list O with the operational parameters used for fitting models; and iv) the current time t. The 

expected spectrum Se is generated using the model for the lightpath (line 1 in Algorithm I) and used to compare 

with the received samples (line 2). The diffs(·) function computes the Euclidean norm of the residual vector 

computed by subtracting Sr from Se [2]. For the time domain, the diffc(·) function computes the Euclidean distance  
 

between the features extracted from Cr and Ce [4]. The results 

are stored in the historical database (line 3). Next, a linear 

regression model for the evolution of diff is trained with a 

fitting window of length T based on historical data in hl and 

tested over the last measurements for a period Δlr (lines 4-6). 

The relative root-mean squared error (rRMSE) between the 

predicted evolution and the observed one is computed and 

stored (lines 7-8). A threshold is set by applying a margin k 

over the rRMSE moving average in a time window Δlr. This 

threshold is exploited to detect unexpected behaviors of the 

analyzed time series. Whenever the threshold is exceeded, a 

positive detection is returned (lines 9-11). 

Algorithm II shows the pseudocode of the severity estimation 

algorithm, which is run as soon as a degradation is detected 

and then periodically for more accurate results. The algorithm 

uses the average symbol variance AvgVar computed from the 

received constellation samples Cr, to estimate when the 

degradation will result into a hard failure. We assume a 

correlation between AvgVar and the BER and then, we can 

estimate the severity of the found degradation by studying the 

evolution with time of the former. We claim that the severity 

estimation by analyzing the received signal in the time  
 

Algorithm I. Degradation detection at frequency domain 

INPUT: ml, hl, O, t  OUTPUT: degradation 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

Se ← ml.generateS() 

diffS ← diffs(hl.get(“Sr”, t), Se) 

hl.append(“diffS”, diffS, t) 

diff[] ← hl.get(“diffS”, t-O.Δlr-O.T, t-O.Δlr) 

lrmodel ← lr_fit(diff[]) 

Ylr← lrmodel(t-O.Δlr, t) 

Err← rRMSE(Ylr, hl.get(“diffS”, t-O.Δlr, t) 

hl.append(“ErrS”, Err, t) 

ErrS[] ← hl.get(“ErrS ”, t-O.Δlr, t) 

if Err > MovAvg(Errs[]) * O.k then return true 

return false 

Algorithm II. Severity Estimation 

INPUT: hl, O OUTPUT: time_disrupt 

1: 

2: 

3: 

4: 

5: 

 

6: 

7: 

Cr[] ← hl.get(“Cr”, t-O.Δfr, t) 

AvgVar[] ← featureExtraction[“AvgVar”](Cr[]) 

pr_mod ← pr_fit(AvgVar[]) 

hwes_mod ← hwes_fit(AvgVar[]) 

if pr_mod(t+O.Tlim)> AvgVar_th OR 

hwes_mod(t+O.Tlim)> AvgVar_th then 

return first_t(pr_mod, hwes_mod, AvgVar_th) 

return ∞ 
 

domain can be used disregarding whether the degradation is detected in the time or the frequency domains. Then, 

let us assume that the pre-FEC BER threshold is reached when AvgVar reaches some specific value, AvgVar_th. 

The algorithm receives the historical database hl and operational parameters O as input. The last received 

constellations are retrieved from hl and the observed AvgVar time series is obtained (lines 1-2 in Algorithm II). 

Time series forecasting is based on two models: polynomial regression and Holt-Winters exponential smoothing 

trained with a fitting window Δfr (lines 3-4). The algorithm identifies the time of service disruption when one of 

the forecasts exceeds AvgVar_th within a given time limit Tlim (line 5); the shortest time in which any of the 

forecasts exceeds AvgVar_th is then returned (line 6). Otherwise, no service disruption is considered (line 7). 

4. Results  

A simulator of a digital coherent system implemented in MATLAB was employed to reproduce the optical layer. 

The considered scenario consisted of a lightpath passing through 8 ROADMs and a total fiber length of 1120 km. 

Each link consisted of 80-km SMFs spans characterized by fiber loss 0.21 dB/km, dispersion 16.8 ps/nm/km and 

nonlinear coefficient 1.3 W-1km-1. A WDM signal with three DP-16QAM@64GBd channels and 75GHz channels 

spacing was transmitted over the SMF at the optimal launching power of -1 dBm obtained through power 

sweeping. The pulse propagation was simulated through a split-step-Fourier method (SSFM) with step of 1 km 

including effects such as group velocity dispersion (GVD), higher order dispersion, polarization dependent fiber  
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Fig. 2. FS and FT failure magnitude Fig. 3. Failure detection using diff(·) for the three failure scenarios. 
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Fig. 4. BER vs AvgVar correlation for FS and FT. Fig. 5. Accuracy of severity estimation. Relative (a) and absolute error (b) 

loss, arbitrary fiber birefringence, and self-phase modulation (SPM). The cascade filtering penalties are considered 

employing measured transfer functions from a 1x9 WSS filter with 75 GHz. Finally, the EDFAs with gain and 

noise figure of 4.5 dB are considered. At the receiver side, a 4 samples/symbol DAC rate was assumed to 

reconstruct the signal. 

In the simulations, 217-long bit sequences were generated. For time analysis, constellation points were modeled 

as bivariate Gaussian distributions and 5 features were extracted: the mean and variance of the real and imaginary 

components, and the symmetric covariance. Finally, AvgVar was computed by averaging the real and imaginary 

variance for all the constellation points. For the frequency analysis, 8 features were extracted from the optical 

spectrum at -6 dB and -3dB: the bandwidth, the two edges and the central channel frequencies. 

Fig. 2 shows the evolution of the failure magnitude for FS and FT in a WSS in an intermediate ROADM. Those 

failures start after the first week with a small frequency shift or bandwidth tightening, which slightly degrades the 

optical signal. The magnitude increases linearly during the second week, when the degradation becomes a hard 

failure. One observation per hour was performed (337 in total). Fig. 3 shows the accuracy achieved by the 

proposed detection method (Algorithm I) for the three failure scenarios considered, i.e., FS (a), FT (b), and FS + 

sub-optimal power (c). Degradation detection was performed with the following parameters O: T=84h (half a 

week), Δlr = 24h (1 day), Δfr = 96h (4 days) and k=2. All the three failures were detected in short times, just a 

few hours after the failure actually started. Interestingly, the presence of a previous degradation coming from sub-

optimal launching power (Fig. 3c) only delays FS detection for a few hours with respect to FS and optimal power 

(Fig. 3a), which shows the feasibility of these methods to operate under realistic scenarios. 

Fig. 4 shows a strong correlation between BER and the AvgVar feature for the studied values and considered 

failure scenarios. We observe that AvgVar~0.2 indicates that pre-FEC BER equals the threshold (1.5×10-2). This 

result validates the feasibility of using AvgVar_th = 1.94×10-1 to estimate the severity of the failure in Algorithm 

II. With that threshold, Fig. 5 shows the actual and forecasted time to hard failure for the three use cases, as well 

as time when the estimation error goes below 8h. In all three cases, severity estimation progressively converges 

to the actual time to the failure. Note that severity estimation works well under single and multiple failures, since 

it is based on the analysis of the evolution of the AvgVar metric, which is closely related to the actual BER. These 

results also entail that the failure magnitude can, indeed, be related to the achievable severity estimation accuracy. 

With such estimation, maintenance can be scheduled with enough time before the degradation becomes a hard 

failure.  

5. Conclusions 

To summarize, algorithms that take advantage of a digital twin to perform failure detection in the frequency and 

time domains and severity estimation in the time domain have been validated. Three failures have been 

investigated confirming the feasibility of the algorithms. 
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