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Abstract: A preemphasis-aware model for SOAs with non-flat WDM inputs yielding
a root-mean-square error of less than 0.05 dB is presented. It outperforms generic neural-
network models while using a fraction of the training data. © 2022 The Author(s)

1. Introduction

The linear scaling of system capacity with optical bandwidth is driving efforts to realize Ultra-Wide Band (UWB)
transmission beyond the C band. SOAs are receiving increased attention in this context [1]. The interplay between
wavelength-dependent attenuation, stimulated Raman scattering and the responses of multiple cascaded amplifiers
across bands becomes particularly relevant in UWB systems and calls for an optimization of the input power
spectral load. Taking into account the SOA response beyond an idealized flat or tilted gain is hence desirable, but
physical models such as the Connelly model [2] are computationally expensive. The various physical parameters
also require elaborate measurement techniques.

Neural network (NN) models have shown promise because of their speed and differentiability aiding gradient-
based optimization. The amount of training data required however can be substantial. They also lack explainability
and control of error. The error of cascaded predictions needed for optical links typically increases exponentially,
imposing strict constraints on the accuracy of individual models.

Recently a new type of model to predict the gain profiles of Erbium-Doped Optical Amplifiers (EDFAs) has
been presented [3]. A regression-based ML model incorporates physical knowledge in the form of an analytical
formula that accounts for the impact of a preemphasis of the input spectral load. The hybrid approach offers
high accuracy, is parameter agnostic and requires minimal data for training. For WDM inputs with moderate
preemphasis, a root-mean-square error (RMSE) of 0.05 dB was reported.

Here we show that the preemphasis-aware approach accurately models the steady-state gain response of an SOA
with non-flat WDM inputs. The approach outperforms generic neural network models, despite being trained only
on a small subset of the data available for training.

2. Experimental setup and measurements

We are interested in the static gain response of the SOA and ignore dynamic gain effects. WDM inputs are sim-
ulated by an ASE noise source with flat output power spectral density (Fig. 1 a). A wave shaper (WS) generates
a WDM comb consisting of 40 selectively attenuated channels. Total input power is controlled by the VOA. Both
total input and output power are measured by the power meter (PM) following calibration. The optical spectrum
analyzer (OSA) output is integrated to obtain the power per channel Pi = P(λi) centered at wavelength λi. Per-
channel power is normalized to sum to the measured total power.

We considered 6 injection currents evenly spaced between 1000 and 1500 mA. The generated inputs are divided
into two groups. The first group has linear power variation (flat or tilted) across the band and 7 distinct tilt values
between 0 and ±3 dB and varying in 1 dB steps, as shown in Fig. 1 b). Total power was varied in 1dB steps from
-6 to 7 dBm, totaling 588 samples. Corresponding gains show a small dependence on preemphasis, with up to
0.2 dB gain variation, see Fig. 1 c). Another group with 600 samples (100 for each current) contains inputs with
random preemphasis, with per-channel power excursions Pi/P̄ (positive and negative) spanning a range of 12 dB.
Total power was varied in the range from -6 to 7 dBm, ranging from small-signal well into the saturated regime.

3. Preemphasis-aware SOA model

Combining the rate equation for the carrier density N in steady-state (dN/dt = 0) with the evolution equations of
the signal and ASE photon densities of the Connelly model [2] and neglecting waveguide attenuation leads to:

I
e
−R(x)−

Nch

∑
i=1

Qin(λi)(G(λi,x)−1)−Qout,ASE
tot (x) = 0. (1)
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Fig. 1. a) The experimental setup for the characterization of the SOA under test, b) example flat/tilted
power spectral load for 5 values of total input powers. c) Corresponding gains for fixed current.

This equation is akin to the extended Saleh model for EDFAs [4]. It balances carrier generation through the
injection current I with carrier depletion through spontaneous and stimulated recombination. Here e is the electron
charge and Qin(λi) the input photon flux (photons/s) in the channel centered around wavelength λi. R(x) and
G(λi,x) are the in general unknown total carrier recombination rate (excluding guided spontaneous emission) and
per-channel gain at the unknown population inversion x. Qout,ASE

tot (x) comprises forward and backward components
of the total output flux due to amplified spontaneous emission. The model hence accounts for ASE self-saturation
that cannot be neglected at large gain.

For two WDM inputs (e.g. one flat and one with random preemphasis) with same total input power, the carrier
densities (population inversions) of the device differ, for two reasons: (i) for fixed power, the photon flux coupled
into the device depends on wavelength. More importantly, (ii) the number of carriers converted into output photon
flux depends on spectral power allocation because the gain is not flat.

Under a homogenenous gain assumption, a gain response can be associated to the population inversion. Follow-
ing [3], for a given preemphasis, we seek an equivalent total input power of a flat input spectral load that produces
the same population inversion x (at the same injection current). To this end, we equate two versions of (1), one
for each type of input. Substituting Qin(λi) = λiPi/(hc), expressing the per-channel input power of the random
load as Pi = P̄+∆Pi and that of the equivalent flat load as Pi = P̄+∆Peq, we equate, all other terms being equal,
∑

Nch
i=1 λi(P̄+∆Pi)(Gi(x)−1) = ∑

Nch
i=1 λi(P̄+∆Peq)(G(λi,x)−1). Hence the per-channel input power correction is

∆Peq =
Nch

∑
i=1

λi∆Pi(G(λi,NchP̄)−1)/
Nch

∑
i=1

λi(G(λi,NchP̄)−1). (2)

Here λi accounts for (i) and the gain appears due to reason (ii). The unknown gain Gi(x) at the unknown population
inversion x is approximated by the gain of the flat input G(λi,NchP̄) evaluated at the total input power of the
random load Pin

tot = ∑
Nch
i Pi = NchP̄. The gain for a random load characterized by average per-channel power P̄ and

deviations ∆Pi, respectively, is approximated by the gain of a flat input as G(λi, P̄,∆Pi) ≈ G(λi,Nch(P̄+∆Peq)).
We tested iterative improvement of the gain as in [5]. The refined gain can be reinserted into (2), giving rise to
an iteration where the correction ∆P(n)

eq at iteration n is determined from the gain G(λi,Nch(P̄+∆P(n−1)
eq )) of the

previous iteration. ∆P(0)
eq = 0 corresponds to a preemphasis-unaware model.

In practice, measured gain profiles for a fixed current and for flat input at various total input power levels are
stored in a lookup table. The gain at intermediate powers is obtained by linear regression for given current.

4. Accuracy of the preemphasis-(un)aware model

We evaluate the preemphasis-aware model for both groups using the same lookup table built from flat inputs
(zero tilt) for the 14 power levels and 6 injection currents, 84 spectral loads in total. These samples are removed
from the test set. Fig. 2 shows histograms of the prediction errors in the per-channel input power obtained with
the preemphasis-(un)aware models for WDM inputs with (a) tilted and (b) random preemphasis. In terms of

RMSE =
√
(1/Nch)∑

Nch
i=1(P

pred,dB
i −Ptrue,dB

i )2, the former distribution corresponds to 0.025 dB and the latter to
0.048 dB, respectively. As expected, the distribution for random inputs is wider because of a larger preemphasis
(12 dB vs. 6 dB range). The RMSE for flat/tilted inputs increases from 0.017 to 0.021 and 0.025 dB as the tilt
increases from ±1 to ±2 and ±3 dB. The largest errors are found on samples with the largest tilt (±3 dB).

In the preemphasis-unaware model (∆P(0)
eq = 0), the gain is determined by the injection current and total input

power alone. This approximation is already quite accurate. Nevertheless, the correction (2) with iteration usually
improves the error. For example, for tilted inputs with up to 3 dB tilt, the RMSE is improved from 0.035 to 0.025
dB. The impact is more significant for outliers: the correction decreases the 99-percentile of the error distribution
from 0.15 to 0.10 dB and the maximum error from 0.34 to 0.21 dB. Typically these are the cases with high input
power and largest preemphasis (largest tilt). In agreement with [5] we find that the improvements from iteration 2
and beyond are negligible.

W1E.7 OFC 2023 © Optica Publishing Group 2023

Disclaimer: Preliminary paper, subject to publisher revision



-0.25 -0.125 0.0 0.125 0.25
Error (dB)

Lo
g(

de
ns

ity
) (

a.
u.

)  
   

 
a)

0 10 20 30 40
Channel index

14

15

16

Ga
in

 (d
B)PRE-UNAW

PRE-AW
GT

-0.25 -0.125 0.0 0.125 0.25
Error (dB)

Lo
g(

de
ns

ity
) (

a.
u.

)  
   

 

b)

PRE-UNAW
PRE-AW

flat(84) 
tilt(504)

flat(84) 
  rand(600)

tilt+rand(950)
tilt+rand(238)

0.05

0.10

0.15

0.20

RM
SE

 (d
B)

NN train:
NN test:

c) NN
PRE-AW

Fig. 2. Error distributions of predicted per-channel power for the preemphasis-aware (PRE-AW)
and unaware (PRE-UNAW) model for (a) tilted and (b) random preemphasis. Corrections from the
preemphasis-aware model are more significant for loadings with larger input power and preemphasis
(or tilt). The inset shows an example of ground truth (GT) and predicted gain from the two models.
(c) Comparison of prediction errors of the neural network (NN) and PRE-AW models. Number of
NN train/test samples are indicated. The PRE-AW model is tested on the same data as the NNs, but
trained on flat inputs only (84 samples). It requires less data while being more accurate.

It is further possible to obtain predictions for a given current I, given a model trained at a similar reference
current Iref [5]. Using (1), Pin

tot of a flat WDM input at current I can be related to a flat input at Pin,ref
tot and Iref at

the same population inversion x: Pin,ref
tot = Pin

tot(I
ref − I0)/(I− I0). I0 can be viewed as the portion of the current that

is effectively lost for signal amplification due to spontaneous recombination and generation of ASE. We can thus
map the gain G(λi,Pin

tot, I) in (2) to G(λi,P
in,ref
tot , Iref), which can be retrieved from the lookup table. For flat/tilted

inputs, the prediction error degrades from 0.025 to about 0.05 dB for the closest measured current (100 mA apart).

5. Comparison to neural network models

To illustrate the advantage of the preemphasis-aware model, we trained generic NN models of the gain consisting
of 1 up to 4 hidden layers with 32 up to 256 hidden units per layer on different subsets of the available data. The
per-channel as well as total input power and the injection current serve as NN inputs.

To put the accuracy of the preemphasis-aware model into perspective, we first trained NNs using the same fixed
training and test sets. Training on the 84 flat WDM inputs only and testing on flat/tilted inputs yields an RMSE
of 0.078 dB for the best NN model, see Fig. 2 (c). Evaluating the same NN on inputs with random preemphasis
yields even larger RMSE in excess of 0.2 dB depending on NN size. This should be compared to 0.048 dB for the
preemphasis-aware model. The NNs do not discover (2), neither the approximate relation of the gain to the total
input power. For most reliable predictions, the NNs should be trained with samples generated from the same data
distribution as the test set. As expected, the prediction accuracy improves when training and test sets contain both
flat/tilted and random inputs. In general, the deeper and wider networks tend to give more accurate results. 10-fold
cross validation with random splits of the joint datasets with 80% of the 1188 samples used for training yields a
best RMSE of 0.100 dB, still significantly larger than that of the preemphasis-aware model (0.039 dB).

6. Conclusion

Using a simple gain model, the SOA gain response can be obtained from knowledge of the total input power and
injection current to within 0.05 dB in RMSE. The preemphasis-aware SOA model reduces the maximum error
by 0.1 dB. Compared to generic NN models, the RMSE is reduced from 0.1 to 0.05 dB while requiring less than
10% of the available training data. The larger amounts of data required by NNs may not always be available. The
results illustrate the advantage of incorporating physical knowledge in the preemphasis-aware approach.
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