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Abstract: We experimentally demonstrate and compare EML- and DML-based optical 

interconnects with 106.25 Gbaud NRZ-OOK and PAM4 for computing applications. The results 

show that both transmitters can be used to enable optical-amplification-free transmissions with low-

complexity DSP. © 2022 The Author(s) 

 

1. Introduction 

High bandwidth density, low latency, and high reach computing application impose critical challenges on electrical 

links to scale the bandwidth in an energy-efficient manner. The computing possibilities per unit area can be scaled 

by digital processing performance. However, bottleneck for the useful computing power is the ability to transmit 

digital signals to processing units with enough I/O bandwidth [1]. Therefore, energy-efficient optical links with low-

complexity and low-latency that can seamlessly interface with the electrical links are highly desirable. Per the latest 

standardization draft on 100Gigabit/200Gigabit Ethernet specifications, one would expect these links operate at the 

same rate as the electrical interfaces (N×106.25 Gb/s) with low-coding-gain forward error correction (FEC) to ensure 

low latency [2],[3]. Moreover, considering the volume of such optical links in the data centers, the optical 

transceivers are preferred to be compact with low energy consumption [4]. From the component level, novel 

optoelectronic technologies are required to enable such stringent requirements. Several optical modulators that can 

be co-integrated with lasers provide low-cost solutions for highs-peed optical interconnects, including thin-film 

lithium niobate modulator [5], micro-ring modulator [6], electro-absorption modulated laser (EML) [7] and directly-

modulated laser (DML) [8]. From the system level, optical amplifications for these types of links are not desirable 

unless absolutely necessary [9]. Besides, the complexity of the digital signal processing (DSP) ASIC is also expected 

to be constrained for such low-latency computation scenarios.  

In this paper, we report on an experimental study of short-reach transmission of 106.25 Gbaud non-return-to-zero 

on-off-keying (NRZ-OOK) and 4-level pulse amplitude modulation (PAM4) with two types of integrated optical 

transmitters, i.e., a 100-GHz Class C-band EML [7] and a 65-GHz Class O-band DML [8]. We constrain our 

experimental configuration to be optical-amplification free and apply in the receiver a low-complexity decision-

feedback equalizer (DFE) of 9-feedforward taps and 9-feedback taps. The results show that both transmitters have the 

potential to enable energy-efficient short-reach optical interconnects for (2×)100 Gigabit Ethernet applications. 

2.  Experimental configuration 

Figure 1(a) shows the experimental setup with the two different integrated optical transmitters side by side. Two 

modulation formats, namely, NRZ-OOK and PAM4, both at 106.25 Gbaud, are generated offline in MATLAB from 

a random binary sequence of >1 million samples using the Mersenne Twister with a shuffled seed number. The 

symbols are firstly upsampled digitally to 4 Sample per symbol, pulse-shaped with a root-raised-cosine (RRC) of 

0.15, and then decimated to 256 GSa/s to match the sampling rate of the arbitrary waveform generator (AWG, 

M8199B, Keysight). The output voltage swing of the AWG is configured to be 2.3 Vpp after embedded electrical 

amplification. For the C-band EML, the laser module (see Fig. 1 (a) inset) is directly connected to the AWG output 

with a 1-mm connector without any adaptor to preserve the broad bandwidth. For the O-band DML, a 110-GHz  
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bias-tee is used to deliver the laser bias current and the modulation signal to the laser, and a 1-mm to 1.85-mm adaptor 

is used to connect to the module (Fig. 1 (a) inset). Both laser modules require temperature control for stable operation. 

The EML is regulated to operate at 17°C to emit sufficient power (+3.5 dBm in this case) after electro-absorption 

modulation, and the DML is regulated at 19°C and has an output power of +7 dBm when biased at linear region with 

modulation. Due to the different operational bands of the two transmitters yielding different chromatic dispersion 

(CD) coefficients, we target different transmission distances, i.e., 500-m single-mode-fiber (SMF) for the C-band 

EML, and 6-km SMF for the O-band DML. At the receiver, the same 100-GHz PIN photodiode (PD) is used to receive 

the signals from both transmitters. A packaged electrical amplifier (EA) of 11 dB gain, which has 1-mm connectors 

for both the input and the output, is used to amplify the PD output signal and deliver it to the 110-GHz real-time digital 

storage oscilloscope (DSO, 256 GSa/s, Keysight UXR1104A). Calibrated end-to-end amplitude responses of the EML 

and DML-based setup without the optical fiber link are shown in Fig. 1 (b). The intrinsic response of the AWG is 

shown as a reference. One can observe that the 20-dB bandwidth is above 70 GHz for both configurations. The optical 

spectra for the modulated EML and DML are shown in Fig. 1 (c) and (d), respectively. Finally, the signal is processed 

with a matched filter, a timing recovery and down-sampling process based on maximum variance, a symbol-spaced 

decision-feedback equalizer (DFE) with 9-feedforward (FF) taps and 9-feedback (FB) taps, and the BER performance 

is counted after the offline demodulation. The low-complexity post-equalization configuration is possible thanks to 

the broad end-to-end system bandwidth. 

3.  Experimental results 

We evaluate the transmission performance of the two individual transmitters with both modulation formats under 

study, respectively. Figure 2 shows the BER results as a function of the received optical power at the PD. For the C-

band EML, we tested with 500-m SMF transmission, whereas for the O-band DML the transmission distance is 

configured to be 6 km thanks to its high output power and the low chromatic dispersion. To accurately extrapolate the 

BER performance when the number of counted errors are very small or zero, particularly for the NRZ-OOK cases, we 

use the importance sampling technique to estimate the BER [9]. In Fig. 2 we show both counted BER and estimated 

BER for all the test cases. One can observe that the estimated BER curves overlap with the counted BER almost 

perfectly in all the cases, indicating an accurate BER extrapolation at high received optical power where the counted 

BER values become zero. For the 106.25 Gbaud NRZ-OOK cases, with the C-band EML as the transmitter, KR-FEC 

(2.18×10-5) limit [11] can be achieved at about -4 dBm, and BER of 1×10-15 (virtually “error-free”) can be reached at 

around 0 dBm after 500-m SMF transmission per the estimated BER curves. With the O-band DML transmitter, the 

KR-FEC limit can be reached at around -2 dBm, whereas an error floor is observed at a BER of around 1×10-13, which 

may be limited by the transmitter SNR and other imperfections in this case. No penalty is observed between the ob2b 

and 6-km SMF transmission owing to the low CD at O-band. For the 106.25 Gbaud PAM4 cases, with the C-band 

EML we could reach the KP-FEC (2.26×10-4) limit [11] at around 2.5 dBm after transmission. The 500-m SMF 

 
Fig. 1. (a) Experimental setup. (b) Calibrated end-to-end system amplitude responses for both EML and DML configurations. (c). The optical 

spectra of modulated EML. (d)  The optical spectra of modulated DML. 

1540 1541 1542
-100

-80

-60

-40

-20

0

P
ow

er
 (

dB
m

)

Wavelength (nm)

 106.25 Gbaud OOK EML

 106.25 Gbaud PAM4 EML

256 GSa/s 

110 GHz

C-band EML

100 GHz

100 GHz PIN
500m 

SMF

AWG

256 GSa/s

1 mm

3.5 dBmDSP DSP

DSO

17 degree C

I      =125mA

V      =1.6V
DFB

EAM

1 mm

11 dB

2.3V
Up to 

120 mV

100 GHz

1541 nm

65 GHz

1312.5 nm

19 degree C

I         = 59 mADFB+R

6km 

SMF

7.0 dBm

O-band DML

1312 1313
-100

-80

-60

-40

-20

0

P
ow

er
 (

dB
m

)

Wavelength (nm)

 106.25 Gbaud OOK DML

 106.25 Gbaud PAM4 DML

(a)

(b) (c)

(d)

Tu3I.1 OFC 2023 © Optica Publishing Group 2023

Disclaimer: Preliminary paper, subject to publisher revision



introduces around 2-dB sensitivity penalty due to the high CD coefficient in the C-band. On the contrary, negligible 

CD-induced penalty is observed for the O-band DML transmitter case, however, due to the limited transmitter SNR 

and modulation nonlinearities, KP-FEC was not reached with the low-complexity DFE of 9-FF taps and 9-FB taps. 

Selected eye diagrams for both modulation formats with both transmitter types after transmissions are also shown in 

Fig. 2. Clear eye openings can be observed in call test cases. Negligible nonlinear compression is shown for the EML-

based PAM4 signal, whereas slight compression in the upper- and lower-levels can be observed for the DML case. In 

summary, both transmitters show good potential to support the low-complexity optimal-amplifier-free single-lambda 

2×100Gigabit Ethernet applications. 

4.  Conclusion 

We demonstrated 106.25 Gbaud NRZ-OOK and PAM4 short-reach transmissions with two types of integrated 

transmitters, namely, a C-band EML and an O-band DML. We show that both transmitters can fulfill the requirements 

of supporting optical-amplifier-free interconnects with low-complexity equalizations and low-latency FEC options. 

These results pave the way for energy-efficient short-reach optical interconnects for (2×)100 Gigabit Ethernet 

applications. 
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Fig. 2. BER results as a function of received (Rx) optical power for both 106.25 Gbaud NRZ-OOK and PAM4 for both the EML and the 
DML configurations, respectively. For each case the counted BER and estimated BER are shown to cover the full power sweep range. Selected 

eye diagrams at highest Rx power level after transmission are shown for all cases. 
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