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Abstract: We configure an explainable machine learning-enabled just-enough margin for each 

lightpath in dynamic S+C+L-band optical networks. Explainable decisions improve blocking ratio 

and spectral efficiency performances by 35.9% and 17.2% compared with the benchmarks. © 

2022 The Author(s)  
 

1. Introduction 

In the era of F5G, driving down the cost per transported bit is critical, which is realized by reducing network capital 

expenditure (CAPEX) and operating expense (OPEX). Multiband optical network, extending the spectrum by 5~10 

times, is envisioned as a competitive near-term network upgrade trend with less CAPEX [1]. In network operations, 

although the excess signal-to-noise ratio (SNR) margin is imperative to maintain error-free communication under 

SNR fluctuation, the rough margin configurations obstruct fully utilizing network capacity which harms the OPEX 

[2]. Current approaches either configure a static margin, e.g., 2~5dB [3] or assume full-filled channel loads for SNR 

estimations in lightpath operations [4]. However, these methods lose efficiency in the S+C+L-band networks. The 

nonuniform inter-channel stimulated Raman scattering (ISRS) effect and the large spectrum range make it 

significantly different for transmission effects in different channels, and thus, applying static margin results in 

insufficient margin for some lightpaths but too much for others. Meanwhile, filling all the unoccupied channels in a 

wideband network with amplified spontaneous emission (ASE) loads will severely overestimate the nonlinear 

interferences (NLI), resulting in unaffordable degradations in spectral efficiency [4]. Therefore, it is indispensable to 

configure just-enough margins for lightpaths in S+C+L-band networks, preventing transmission error induced by 

SNR degradation as well as preventing NLI overestimation to improve spectral efficiency. 

In this paper, we make the first attempt to configure a just-enough margin for each lightpath in dynamic 

S+C+L-band optical networks. Faced with challenges of complex couplings among multiple factors, including ISRS 

effect, network topology, traffic mode, etc., machine learning (ML)-enabled end-to-end SNR degradation prediction 

is conducted to infer the just-enough margin for each lightpath. The blocking ratio and spectral efficiency 

performances are improved by 35.9% and 17.2% compared with the benchmarks. Furthermore, to realize 

white/gray-box ML-enabled margin configurations, we utilize an explainable machine learning technique, i.e., 

SHapley Additive exPlanations (SHAP), to peek inside latent knowledge between multiple factors and SNR 

degradations. The training time of the ML model is reduced by 36.8% with SHAP-based feature selection. Note that 

although the traffic dynamicity is considered to affect the SNR in this paper, the large-timescale effect, e.g., device 

aging, can be integrated into our proposed XAI-enabled method when actual data is achieved [5]. 

2. Explainable AI for Just-enough Margin Configurations 

Problem Statement: Fig. 1 (a) shows an optical line system in S+C+L-band optical networks. We assume the 

generalized SNR (GSNR) which considers the NLI noise and ASE noise. In S+C+L-band networks, the 

transmission characteristics are different for lightpaths in different channels. the ISRS effect induces power transfer 

from high-frequency channels to the lower ones. The nonlinear coefficient (  ), attenuation factors, and noise 

figures (NF) of amplifiers are nonuniform for different channels [1]. Moreover, considering the traffic dynamicity, 

represented in nonuniform traffic load and network topology characteristics, such as node/edge betweenness, the 

adjacent traffic when the network is steady will also be different for different lightpaths.  

Under the different transmission effects, traditional margin configurations are no longer efficient. As is shown in 

Fig. 1 (b), if considering a static margin, e.g., 1dB, is subtracted from the beginning of life (BoL) GSNR for all 
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Fig. 1. (a) Different transmission effects in different bands; (b) Illustration of GSNR degradation and just-enough margin configuration. 
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lightpaths, T1 will select a lower order modulation format (MF) which wastes the capacity, while T2 will suffer an 

insufficient GSNR in its duration. The T2 will either suffer from transmission interruption or prohibit adding new 

traffic in its occupied links, which also wastes the potential capacity. Therefore, the just-enough margin should be 

configured adaptively for each lightpath. As shown in T3, the most severe GSNR degradation during a lightpath’s 

lifetime can be set as the just-enough margin for this lightpath. Then, just-enough margin configuration is converted 

to estimate the most severe GSNR degradation for a lightpath. As the GSNR degradations differ significantly among 

lightpaths, we propose ML-enabled methods to learn the relationships between multiple factors and the GSNR 

degradations. The framework of the just-enough margin configuration scheme is shown in Fig. 2 (a). 

Data Collection: The GSNR degradation estimation is modeled as a regression task. For the ith traffic, a 

lightpath is deployed in the network. Feature 
ix  and GSNR BoL

iG  at BoL are obtained. Initializing Low BoL

i iG G=  as 

the lowest GSNR during the lifetime of the lightpath. At each time point, we recompute GSNR for lightpaths in the 

network. If the current GSNR of the ith traffic is lower than Low

iG , the Low

iG  is updated as this GSNR value. When 

the ith lightpath is released, a sample  ,i iyx  is obtained, where BoL Low

i i

iy G G= −  is the most severe GSNR 

degradation. The features are shown in Fig. 2 (b). Notations ( )
min

 , ( )
max

 , ( )
mean

 , ( )
med

 , and ( )
std

  are the min, max, 

mean, median, and standard deviation of variable  . The LSR, LT, EB, and ND stand for the spectrum utilization of 

the links, traffic numbers in the links, edge betweenness of the links, and the degrees of the nodes in the lightpaths.  

Model Training: The features are normalized with ( )ˆ /d d d d

i ix x x = − , where d

ix  is the dth feature of the ith 

sample, 
dx  and 

d  are the mean and standard deviation of the dth feature. The dataset is divided into training set, 

validation set, and testing set at the ratio of 70%:15%:15%. We take three typical ML models for GSNR degradation 

estimation, including random forests (RF), deep neural networks (DNN), and XGBoost [6]. We adopt mean square 

error (MSE) and coefficient of determination as the evaluation metrics for regression performance. The MSE 

between the estimated GSNR degradation and the target is in the form of ( ) ( )
2

ˆMSE 1/ i ii
n y y=  − , where ˆ

iy  is 

the ML model output for ith sample. Furthermore, the coefficient of determination 2R  is used to evaluate the 

performance of the regression, which is defined as ( ) ( )
2 22 ˆ /i ii i

R y y y y= − −  , where y  is the mean value of 

the target output. The more the 2R  approaches 1, the more accurate the regression model is. 

Model Explanation: Although ML models efficiently fit the GSNR degradations with input features, their 

black-box nature prevents operators from explicitly knowing how the output is produced, which hinders the 

deployment of ML models in the optical networks [7]. Therefore, the model explanation is imperative for white-box 

just-enough margin configurations. This work adopts SHAP to explain the prediction of the ML model by 

computing the Shapley value of each feature in a sample, which indicates the contribution of such feature to the 

model prediction. The following questions are aimed to be addressed: i) What are the most important features? ii) 

What are the reasons for the existence of abnormal/extreme values in GSNR degradation? and iii) Can feature 

contributions be utilized to reduce model training complexity? Through exploring these questions, we make the just-

enough margin decisions more transparent and use explanations in feature selection to reduce training complexity. 

3. Performance Evaluations and Explanations Analyses 

The DT and CORONET [8] topologies are adopted for evaluations. We consider an S+C+L-band elastic optical 

network, where spectrum ranges from 187.54 THz to 199.54 THz, with channel granularity of 12.5 GHz. The 

parameters of the G.652.D fiber, the modulation format thresholds, and the NFs of amplifiers are the same as [1]. 

The bandwidth request of traffic is between [50, 200] Gbps. Traffic arrival   is set between 10 and 45, and average 

lifetime 1/   is set as 50. For each request, the lightpath is selected in a KSP-FF manner. 

AI Model Effectiveness: A dataset that contains 
55 10  samples are collected under different  . The best 

hyperparameters of ML models are selected. The RF model contains 200 trees with a max depth of 10. DNN 

contains 4 hidden layers with each layer having 100 neurons. There are 100 trees with a max depth of 10 in 

XGBoost. Table 1 shows the performances of the ML models. Among three ML models, the XGBoost achieves 

lower training complexity, shorter inference time, and better fitting performance than RF and DNN. Therefore, the 

XGBoost is selected as the ML model to be evaluated in the following. 

• Features Contributions?
• Why abnormal values?
• Reduce training time?
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Notation Description 

Lifetime Lifetime of the request 
FS_Num FS number occupied by the lightpath 
FS_Begin/FS_End The index of the first/last FS in the FS block 
P_ASE ASE noise power 
eta_SPM/eta_XPM NLI coefficient of SPM/XPM 
Link_Num Link number in the lightpath 
Traffic_Num Traffic number in the network at BoL 
LP_Len The length of the lightpath 
GSNR_BOL GSNR of the lightpath at the BoL 

min max mean med std, , , ,LSR LSR LSR LSR LSR  min max mean med std, , , ,LT LT LT LT LT  

min max mean med std, , , ,EB EB EB EB EB  min max mean med std, , , ,ND ND ND ND ND  
 

Fig. 2. (a) The framework of the explainable machine learning-enabled just-enough margin configurations. (b) Notations of the input features. 
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Network Performances: We evaluate the blocking ratio 

and spectral efficiency with benchmarks include static 

margins [1, 2, 3] dB, and full-filled. The spectral efficiency 

is presented by the average modulation order of the 

established lightpaths. As depicted in Fig. 3 (a)-(d), the just-

enough margin outperforms the benchmarks in blocking ratio by 35.9% on average. Compared with 2-3dB margin 

and full-filled, the proposed method overcomes the overestimation of the GSNR degradation and improves the 

spectral efficiency by 17.2% on average. Compared with 1dB margin, the spectral efficiency is similar but the 

blocking ratio is still reduced. It is because the just-enough margin is adaptive to each individual lightpath. 

Explanations Analyses: The results of applying the SHAP method on the XGBoost model are depicted in Fig. 3 

(e)-(g). We can retrieve the significant features from Fig. 3 (e). The lifetime of traffic positively correlates to the 

margin, which is because with a longer lifetime, there tends to be more adjacent traffics and thus, a more severe 

XPM interference. The results also reveal some hidden information, such as the FS number having a negative 

correlation to the margin. It is because the XPM effect is more severe when two frequency is near, but if a lightpath 

has a larger range of FS block, the center frequency of two FS blocks will be farther, and thus, a weaker XPM effect. 

We further explore the explanations of the extreme outputs. The contributions of the features in a 

maximum/minimum GSNR degradation are shown in Fig. 3 (f)-(g). The percentile of each feature is marked beside 

each bar. Take Fig. 3 (f) as an example, the lifetime is relatively high while the eta_XPM is low. Low eta_XPM 

means there are many idle FSs around this lightpath and thus, more requests can be provisioned around these 

lightpaths. The significant features are usually at the extreme value point and this inspires the network operators to 

pay more attention to the lightpaths with features at extreme points, because their GSNR degradation may be severe.  

Utilizing Explanations for Complexity Reduction: As shown in Fig. 3 (e), the contributions of some features 

are relatively low, then we further conduct a feature selection following the contributions provided by SHAP. The 

features are added in the order of their average contributions. As depicted in Fig. 3 (h), the model accuracy increases 

with adding features and approaches the original model using only the 15 most significant features. The model 

training time is then reduced by 36.8%. These results demonstrate that the model explanation is effective in reducing 

the complexity of training with negligible loss in model performance. 
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Fig. 3. (a)-(b) The blocking ratio under DT and CORONET. (c)-(d) The spectral efficiency under DT and CORONET. (e) Features contributions. 

(f)-(g) Features contributions on the maximum/minimum GSNR degradation instance. (h) Performance of XGBoost with feature selection. 

4. Conclusions 

We proposed an ML-enabled just-enough margin configuration scheme in multiband optical networks. The 

performances on blocking ratio and spectral efficiency are improved compared with the benchmarks. Furthermore, 

the explanations on black-box models are investigated for transparent margin configurations and efficient training.  
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Table 1. Performances of ML models for just-enough margins. 
 RF DNN XGBoost 

Training (min) 40.72 120.35 25.05 
Testing (ms) 0.053 0.042 0.012 

MSE 34.25 10−  32.63 10−  31.72 10−  

R2 0.697 0.812 0.865 
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