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Abstract: We introduce a traffic grooming technique for multilayer networks that uses
reinforcement learning. We confirm its superior performance over heuristic methods as
regards its ability to meet several key requirements such as blocking probability and energy
consumption. © 2022 The Author(s)

1. Introduction

The IP over WDM architecture is gaining attention for metro core networks again. This concept was proposed
over 20 years ago, but only now is feasible in terms of hardware, as the emergence of pluggable digital coherent
transceivers enables high-capacity, long-distance communications directly from IP routers. From a software per-
spective, Telecom Infra Project (TIP) has identified the integration of IP and WDM operational control as its next
target, following the activities for disaggregation, softwarization, and open sourcing [1].

One of the essential techniques for multilayer network planning is traffic grooming, which accommodates IP,
Optical Data Unit (ODU), and other electrical layer paths or connections into optical paths, as well as the Routing
and Spectrum Assignment (RSA) algorithms that determine the route and frequency slots of optical paths at the
optical layer. Against these problems, heuristic methods have generally been used to find the best solution for
networks of realistic size. However, in recent years, especially for RSA, research has been conducted on methods
that use reinforcement learning (RL) to autonomously train and select optical paths and frequency slots, and it has
been reported that these methods can achieve lower blocking probabilities than the benchmark RSA algorithm,
the First-Fit method [2].

This work describes a method for applying RL to traffic grooming, in which electrical paths are accommodated
into optical paths in dynamic multilayer networks. We show the superiority of the proposed method over heuristic
methods, and the challenges and solutions to planning multilayer paths in an integrated manner using electrical
and optical layer reinforcement learning will be discussed.

2. Traffic Grooming in Multilayer Path Planning

2.1. Multilayer Path Planning Framework

Figure 1 illustrates the multilayer path planning process [3]. Once a new (electrical) path demand is generated, one
or more optical paths are assigned to the paths connecting the source and destination nodes. This optical path may
groom its electrical paths to use free resources (e.g. tributary slots) of an already established optical path, or it may
establish a new optical path for accommodating the electrical paths. One heuristic approach to this multilayer path
planning problem is known to be based on auxiliary graphs [3,4]. The planning output is obtained by constructing
an auxiliary graph consisting of existing optical paths that can be groomed and candidate optical paths that can be
newly established, and then performing a shortest route search on the graph.

The process includes two planning items. The first is the routing, spectrum, and operational mode assignment to
be performed for the newly established optical path. When a new optical path is established as a result of multilayer
planning, the parameters of the optical path, such as routing, frequency slot, modulation format, symbol rate, etc.,
are determined. The other is edge weight assignment, which determines whether priority is given to establishing
an optical path or grooming an existing optical path.

In this work, we discuss how to apply RL to optimize the latter’s edge weights. The weights of the edges
e ∈ GECG(E) constituting the graph Establish Candidate Graph (ECG), which is composed of candidate optical
paths to be established, are set to W ECG

e =W ECG+h∗W ECG
h , the weight of the groomable established optical edge

e ∈ GGCG(E) of the graph Grooming-Capable Graph (GCG) composed by paths, is W GCG
e = W GCG + h ∗W GCG

h .
These four parameters W ECG, W ECG

h , W GCG, and W GCG
h are determined arbitrarily in the heuristic method, but this

work determines them based on RL.
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Fig. 2: Reinforcement learning scheme for traffic
grooming

2.2. Traffic Grooming using Reinforcement Learning

RL is a type of machine learning that iterates interaction between the agent and its environment. The agent acts
as the brain that plans multilayer paths, and develops the agent’s strategies that maximize the reward, a measure
of how good or bad the planned result is. Figure 2 shows the RL model for determining the edge weights of the
auxiliary graph. When a path demand arrives, the agent generates a feature vector from the path demand and the
current multilayer network for input to the neural network. The feature vector assumed in this work includes a
one-hot vector representing the source and destination nodes of path demand and information on the number of
hops required per operational mode (0 if unreachable) for each GCG and ECG for all node pairs. In addition, this
work employs Proximal Policy Optimization (PPO) [5], a proven RL algorithm using the policy gradient method,
as it can directly output four edge weights by means of policy functions processed by neural networks. Based
on the output values, an auxiliary graph is constructed and the action is determined by running the shortest route
algorithm along the graph. After reflecting this action in the multilayer network, the reward function evaluates the
planning results. Then, the weights of the neural network of the agent are updated in accordance with the result of
the reward function.

Here, we discuss two advantages of RL over heuristic methods. The first is that it realizes edge weight opti-
mization based on flexible parameter settings. As mentioned earlier, edge weights are determined according to
an arbitrarily determined policy, but if this policy is made more flexible, the rule setting becomes more complex.
In contrast, in RL, edge weights are automatically optimized for feature vectors that change according to path
demand and network conditions. Second, the reward function can directly specify whether the reward is good or
bad. In addition to blocking probability, delay and power consumption may also need to be taken into account
when planning multilayer paths. In the heuristic method, the design considering delay and power consumption
was indirectly implemented by adjusting the edge weights, but in RL, these evaluation measures can be directly
reflected in the reward function.

3. Simulation Setup and Results

The superior effectiveness of the proposed method using RL over heuristic methods was evaluated in simulations
of two topologies: NSFNET (14 nodes, 12 links) and DTNET (14 nodes, 23 links). The number of dynamic path
demands evaluated was set to 40000, and bit rates in increments of 100 Gbit/s from 100 Gbit/s to 400 Gbit/s were
assumed to arrive between randomly selected node pairs in equal proportions, with the occurrence and duration
following Poisson and exponential distributions, respectively.

In the optical layer, the frequency slots available for each link were 12.5 GHz/slot * 160 slots. In the optical
layer, k-shortest paths (k=3) for path selection and first-fit for frequency assignment were employed for creating
new optical paths. The operational modes that offer bandwidth and transmission distance of optical paths can be
selected from the 15 options described in a previous work [3], From among them, the optimal operational mode
adopted required determining the bit rate and distance with the highest bandwidth and groomable capacity. These
assumptions at the optical layer have been shown to attain lower blocking probabilities in the previous work on
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Fig. 4: Simulation results

heuristic methods, and the same policy is adopted in this work for the establishment of optical paths for both
heuristic methods and proposed RL method.

For the RL model, we consider two reward functions: 1) MinBlk: a policy that minimizes the blocking probabil-
ities, earning +1 for a successful path planning and -1 when blocking occurs; 2) MinPath: a policy that minimizes
the number of paths required per path demand, earning 10 / (hop count of established path + hop count of groomed
path) for a successful path planning and -1 when blocking occurs. The hyperparameters used for training and an
example of how training progresses when MinPath is used in DTNET are shown in Fig. 3. Note that even better
results may be obtained in the future by optimizing the hyperparameters and by fully implementing the training
process.

Figures 4(a) and 4(c) show the blocking probability against traffic intensity. MinBlk can reduce the blocking
probability against the heuristic method, for example, if a path is accommodated with a blocking probability of
1e-3, MinBlk can accommodate about 5 % more path demands in both two topologies, respectively. On the other
hand, MinPath is not optimized for blocking probability and has the same or higher blocking probability than the
heuristic method. Figures 4(b) and 4(c) show the total number of optical paths used to accommodate dynamically
generated path demands. This is a parameter closely related to power consumption and delay. MinPath saves up
to 6.7 % and 2.1 % of the number of paths in the two topologies, respectively, versus the heuristic method.

4. Conclusion

This work introduced a dynamic traffic grooming method for multilayer networks that uses RL. One of the advan-
tages of RL is its ability to design multilayer paths with various characteristics by setting the reward function. Our
simulations demonstrated that the method outperforms conventional methods in metrics such as blocking proba-
bility and power consumption. As mentioned earlier, the optical path planning algorithm, which was a heuristic
method used in this work, could be changed to a RL-based method and further performance improvement could
be achieved by cooperating the RL models in electrical and optical layers. How to coordinate the optical layer path
planning, which aims at efficient use of frequency resource, and the electrical layer path planning, which prefers
grooming, is a future challenge.
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