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Abstract: Photonics holds the promise of reshaping Machine Learning and High-
Performance Computing hardware landscape, stripping it of unnecessary signal conversion
overhead, complying with strict power dissipation envelopes while unlocking unrivaled
compute and bandwidth capacity. © 2022 The Author(s)

1. Cloud hardware ecosystem of tomorrow

While still discovering new applications of Artificial Intelligence (AI) and Machine Learning (ML), enabling ser-
vices that were unimaginable a few decades ago - from Natural Language Processing and Generation (NLP/NLG)
[1], autonomous vehicles, medical diagnostics, to predictive modeling and recommendation engines [2, 3], the
underlying models are exploding in terms of parameter count (hitting 1 trillion in Meta’s DLRM22 [3]), data vol-
ume, bandwidth requirements and complexity (reaching 109 petaFLOPs for large-scale model training [4]). Long
relied-upon workhorses of compute - CPUs and GPUs, combined with pluggable optics for intra- and inter-Data
Center Interconnection (DCI) do not suffice anymore. Increasing compute demand translates into growing hard-
ware, making Processing Units (xPUs, x = C, G, T) reticle-limited and enforcing transition from monolithic chips
to chiplets and multi-chip modules, calling for improved interconnection bandwidth. At the same time, compute
resource underutilization and limited beachfront for the I/O requires a more flexible interconnection fabric, ready
to support resource disaggregation [5], which would also aid in relieving power density challenges, in the view
of recent total dissipated power projections of kW per socket [3]. The main takeaway from the current state of
AI/ML and High-Performance Computing (HPC) hardware is that sub-systems cannot be designed/optimized in-
dependently from software - or one another - anymore; the whole system needs to be treated as a unique entity,
following lean design principles, carefully pruning any excess operation in the chain from software down to chip.

Figure 1 depicts a vision of a future cloud ecosystem, relying on three paradigms: (i) software-hardware co-
design, (ii) heterogeneous computing, and (iii) memory and compute resource disaggregation. Both the hosts
and the chiplets require decentralized interconnection approach, based on the connectivity fabric [3, 5], which, if
implemented optically, could offer higher bandwidth, lower latency, and, if co-packaged, significantly improved
power efficiency. Chiplets themselves should support heterogeneous computing [6], having a variety of processing,
memory and control units, tailored to a particular class of tasks. Technology will also most likely be diverse,
without enforcing one-fits-all solution, but harnessing the benefits of each platform depending on the task at hand.
Finally, the software will need to be backward compatible with old platforms and support implementation of pre-
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Fig. 1. Abstraction of a future hardware-software ecosystem for AI/ML/HPC.
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trained models, minimizing the energy and time cost of retraining. At the same time, new models should be trained
directly on the hardware they will be executed on. In case of photonics, noisy, nonlinear and analog signal nature
will imply lower bit precision, but embracing this may result in more resilient models, as demonstrated in [7, 8].

2. Programmable Photonic GeMM engines

Introducing photonic compute hardware into hosts could alleviate excessive O/E/O conversion in fetch-compute-
transmit processes, while supporting large-scale General Matrix Multiplication (GeMM) operations, frequently
encountered in AI/ML models that are particularly “heavy” for the electronic xPUs. Modern ML models, such
as Deep Learning Recommendation Models (DLRMs), leverage both large embedding tables for tackling sparse
data and Multi-Layer Perceptrons (MLPs) [2], the latter being a sequence of Fully-Connected Layers (FCLs)
interleaved with activations, which can be represented by Vector-by-Tensor Multiplication (VbTM), Fig. 2(a), [9].
Similarly, NLPs/NLGs, which are transformer-type networks, rely on encoder-decoder blocks (a multitude of
FCLs, calling for VbTM) with scaled dot-product attention implemented via Matrix-by-Matrix Multiplication
(MbMM), Fig. 2(b), for increased efficiency [1]. Finally, Convolutional Neural Networks (CNNs) still remain the
standard in image classification, video processing and object tracking [10]. If approached to in parallel fashion
(filtering multiple input vectors by the same kernel), convolutional layer can be represented by MbMM [9].

The consensus among academic community shows that the most suitable paradigm for arbitrary matrix multi-
plication in photonic platform is the crossbar [12–17], schematically depicted in Fig. 2(c). Comparing to its most-
well-known competitor in coherent domain, based on Singular Value Decomposition (SVD) and Mach-Zehnder
Interferometer (MZI)-mesh unitary matrix implementation, crossbar offers numerous benefits for arbitrary matri-
ces, summarized in Fig. 2(f) [11,12], falling behind only in the special case of unitary matrices, where MZI-mesh
power conservation features come into the spotlight, making it suitable for quantum applications [18], but not
quite as much for AI/ML ones. The main advantage of the crossbar is bijective mapping of weight elements to
hardware nodes, which reduces the programming steps to 1, drives down the total Insertion Loss (IL), Fig. 2(d),
and almost diminishes differential path loss, enables straightforward fault detection and, more importantly, full
loss-induced fidelity restoration, Fig. 2(e) [12]. Lower total IL and full fidelity restoration open the possibility
of migrating from ultra-low-loss node weighting technologies, mandatory in SVD application, to lossy ones that
offer higher bandwidth and unlock the possibility not only for multi-10 GHz inference [7,8], but also training over
photonic hardware [13]. Yet another benefit of lower overall IL is the high scalability potential, where photonic
crossbar engine now becomes limited by available laser power and reticle size instead of fidelity and loss.

As long as the size of the matrix does not exceed the size of the crossbar, it supports time-of-flight multiplica-
tion in a single compute step; otherwise, tiled-matrix multiplication can be adopted [19]. Going a step further in
supporting higher dimensionality calls for introducing another degree of freedom, with wavelength being the most
straightforward choice for the coherent crossbar [9, 20]. The true potential of multichannel operation can be seen
not when both input and weight are λ -selective, but when one of the two is, while the other uses common mod-
ulator for all channels, executing VbTM, Fig. 2(a), or MbMM, Fig. 2(b). Moreover, offering two possible routes
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Fig. 2. (a) Vector-by-Tensor and (b) Matrix-by-Matrix multiplication, both with optional bias. (c)
Programmable WDM-enhanced coherent photonic crossbar [9], with its (d) total IL and (e) loss
induced fidelity dependence on loss per node and (f) performance summary [11, 12]. (g,h) Recon-
figurable (g) input and (h) weight banks producing the GeMM/layer as per table (i).

Th3D.4 OFC 2023 © Optica Publishing Group 2023

Disclaimer: Preliminary paper, subject to publisher revision



for the signal (λ -selective and common), that can be reconfigured on-demand, Fig. 2(g), (h), seamlessly supports
switching between the most common GeMM operations, as summarized in Fig. 2(i), accelerates computation and
brings significant power-savings [9].

Programmable crossbar easily turns into a Programmable Photonic NN (PPNN) by connecting one layer’s out-
puts to the next layer’s inputs [20]. As it does not rely on photodetection for summation, it is particularly suitable
for all-optical activations, eliminating O/E/O conversion. The layers can be placed on physically separate circuits,
or can be a part of a single crossbar, where its GeMM mode of operation would be reconfigured from one time-step
to another. Using PPNN in a hybrid software-photonic NN, where the last two layers were implemented in photon-
ics (using VPI Transmission Maker™) forming a fully-convolutional network, has shown accuracy degradation of
only 2% comparing to software-only in MNIST digit parity identification, and offered guidelines for choosing the
optimal input/weight resolution (down to 4 bits) and tolerable modulator extinction ratio (∼ 8−10 dB) [20].

3. Conclusion

The exciting times we are in are inclusive of a multitude of technologies, demand co-design on different platforms,
a tight software-hardware development framework and heterogeneous approach to compute and data movement,
allowing for the most efficient technologies to be gradually filtered out and implemented as native in future systems
[6]. Photonics certainly has a bright future in advanced ML hardware, both in connectivity and compute domains
- there is undoubtedly many more useful system features that photonics can enable or advance. Some of them
have already been demonstrated, such as physical layer DDoS attack identification [19], real-time analog signal
processing [21] etc., and some are yet to be envisioned.
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