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Abstract: This paper presents a Machine Learning technique based on Principal Compo-
nent Analysis (PCA) combined with telemetry data scrambling to detect multiple types of
failure in optical networks while preserving data confidentiality. Experiments in an optical
testbed show the effectiveness of the proposed solution. © 2022 The Author(s)

1. Introduction

Preserving data confidentiality is becoming of paramount importance in many fields (e.g., confidential comput-
ing [1] and in optical networks). With emerging trend of network automation or zero touch networking some func-
tions, such as failure detection, can be offloaded to third party applications based on Artificial Intelligence/Machine
Learning. In this case, network providers might not want to disclose confidential data related to their network state
but they would like that third party applications allow them to effectively detect network failures.

In [2] the authors proposed a method for maintaining confidentiality of telemetry data to be elaborated by a
third party app. The solution stems from methods already proposed in image processing [3, 4] where, although
pixels are scrambled, Machine Learning (ML) techniques are capable of classifying the original image. However,
the evaluation reported in [2] showed the effectiveness of the proposed technique considering a single specific
failure only and a specific set of features, such as the Bit Error Rate (BER) and the Optical Signal to Noise Ratio
(OSNR) at the receiver. This paper experimentally that the aforementioned method is effective in preserving the
data confidentiality and detecting multiple failures along a WDM network testbed shared by multiple lightpaths.

2. Feature scrambling-based confidentiality and PCA-based failure detection
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Fig. 1. a) Distributed Failure Actuator (DFA) internal architecture and configurability; b) Experi-
mental optical testbed and telemetry system.

As originally presented in [2] the proposed method for confidential failure detection combines feature scram-
bling, for preserving confidentiality, and Principal Component Analysis (PCA), for failure detection. Considering
Fig.1, data are collected from the optical network and sent to the preservation plugin (step 1-2). Data confiden-
tiality is obtained by scrambling, at the operator premises, the elements of the matrix X € R"*™ consisting of m
telemetry parameters collected n times from different network devices (step 3).

The scrambled feature matrix X is then sent to the third-party app (step 4-5) that finds its principal components
by means of Principal Components analysis (PCA) (see [5] for details). Because PCA is rotational invariant, the
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ordering of the measurement instances has no effect on the resulting calculation of the principle components and
principle directions. Thus, applying PCA to X or X results in the same manifold space but with different rotations.

The PCA reconstructed scrambled matrix X is then sent back to the operator (step 6-7), where the preserva-
tion plugin de-scrambles the data (step 8) and sends them to the Intelligence block (step 9-10). The intelligence
computes the error E = X — X, in the form of the Euclidean distance. If the error is higher than a given threshold,
during the training, a failure is detected. The novelty of this paper is that the method is successfully applied for
the first time to a scenario where failures can occur in different links and the path is shared by multiple lightpaths.

3. Experimental Evaluation Scenario

In the bottom of Fig.1 the testbed considered for the experimental assessment of the proposed solution is shown.
It consists of a multispan link (i.e., 4 spans) with a single-mode-fiber spool of 70km each. After each span one
amplifier (A;) compensates the loss experienced by the optical signal (around 15dB). The amplifiers work in gain
mode, applying the configured gain to the signal. The link is used to transmit two lightpaths, L1 and L2, generated
by two commercial 100G muxponders. The channels are aggregated with a Wavelength Selective Switch (WSS)
before being amplified by the booster amplifier (i.e., B). The booster amplifier is configured in power mode in a
way that each channel at the ingress of spanl has a launch power of 0dBm, avoiding non-linear effects during the
transmission. After the 4 spans link, the receiver side is present (right side of the figure). The two channels are
filtered with a second WSS and are sent to the respective coherent receiver (i.e., RX1 and RX?2), where the Digital
Signal Processing (DSP) is performed and the channel performance is analyzed. At each span, a Distributed Failure
Actuator (DFA) has been connected to emulate failures. The DFA has been implemented with a Micro Electro-
Mechanical Systems (MEMS), able to switch the optical transmission from an input port to two possible output
ports, and a WSS to allow different failure emulation (i.e., incremental loss, narrow filtering). As shown in the
insight 1.a the two available physical paths present the same attenuation, keeping in consideration the insertion loss
of MEMS (e.g., around 3dB) and WSS (e.g., around 8dB). By relying on the DFAs and the MultiFailure Dataset
Generator, a failure can be automatically generated in one of the different spans, allowing the implementation of
different scenarios in a single testbed (i.e., from a 280km multi-span link to a network with 5 ROADMs connected
by 4 single-span links). The Generator is able to configure, for each DFA, failure/non failure condition, along with
different types of failure. In the experimental validation three different types of failure have been considered: (i)
the generalized degradation affecting the two optical channels (i.e., 10dB), (ii) the degradation of only L1, (iii)
the degradation of only L2. The described testbed is connected to a new-generation telemetry-enabled monitoring
platform [6], able to collect the Key Performance Indicators (KPIs) from the traversed devices. More specifically,
the system samples the input power level at each amplifier (e.g., Piny; in the figure, with i=1,2,3,4) and the
coherent data at receiver side (i.e., OSNR and instantaneous pre-FEC Bit Error rate) for each installed lightpath,
with a period of 5 seconds. The platform consists of a distributed event streaming system based on Kafka, with
high-performance data pipeline and data processing. In particular, the platform allows the streaming of data from
KafkaProducers to KafkaConsumers using Topics (see Fig. 1). This type of architecture is able to perform on-
the-fly data processing in the form of plugin attached to the system by using standalone Consumer — Processor —
Producer nodes. In this specific scenario, the plugin concept has been applied to implement the scrambling (step
3 in the figure) and the de-scrambling (step 8) operations to preserve the data confidentiality between operator and
third-party app. To test the PCA-based algorithm 4 different datasets have been collected, considering a failure
in each of the 4 spans. Each failure has duration of 1 minute, with random inter-failure time between 1 and 4
minutes. Each experiment considers four main phases: (1) the normal condition, (2) five failures on L1 only, (3)
five failures on L2 only, (4) failures on both L1 and L2.

4. Results

All the experiments are performed on a Ubuntu PC equipped with a CPU Intel® Core™ i7-8750H, and 32 GB of
RAM. Fig. 2 introduces the performance of the proposed approach in terms of data reconstruction (Fig. 2a) and
failure detection (Fig. 2b) along with the confusion matrix for the original dataset (Fig. 2¢) and the scrambled one
(Fig. 2d). In the training (Train) and validation (Val) phase (depicted in black and gray colors) a specific dataset
is considered that contains the key parameters in normal conditions, with no failures; 80% is used for training
while 20% is used for validation. It can be verified that the model adequately reproduces the normal pattern of the
system, which is corroborated by the small values of the mean squared error for the training data in Fig. 2a.

For the test data, Fig. 2b reports the outlier detection results, when the aforementioned failure sequence is
generated respectively in span2 (S2 in blue) and in span3 (S3 in green). In the former case, outliers are found for
the input power at ampli2, ampli3, ampli4 and the OSNR collected at two cards. Indeed, according to the failures
sequence, five failures affect L1 (i.e., cardl OSNR), then five failures affect L2 (i.e., card2 OSNR) and finally
five failures are generated to degrade both L1 and L2. Because the failures are generated after spanl, spanl is not
affected by the failure (i.e., very few outliers are detected). In the S3 test, outliers are found for the input power at
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Fig. 2. Model reconstruction (a), detection (b), original (c) and scrambled confusion matrix (d).

ampli3, ampli4 and the OSNR collected at two cards. Since the same failure sequence is generated, similar outlier
detection pattern can be observed, with the difference that since the failures are generated after span2, spanl and
span2 do not present outliers (i.e., very few outliers are detected).

To check the correspondence between a detected soft failure and the actual condition of the system the con-
fusion matrix is used. For simplicity, Fig. 2c and Fig. 2d show the confusion matrix when the data is not and
is scrambled respectively. After verifying the values at the main diagonal, for both cases, the model performs
accurate predictions of failure and no failure conditions with 90.66% of accuracy in the predictions.

5. Conclusions

A technique based on PCA and telemetry data scrambling is adopted to confidentially detect multiple failures in
Optical Networks. The experimental results collected on an optical testbed show the effectiveness of the solution.
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