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Abstract: We propose a programmable optical fabric design for Data Center networks that 

extends SDN to L1. We present experiments on our HPC/ML testbed leveraging the 

programmable network to automatically failover from hardware or software failures.   
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1. Introduction 

Software-defined control planes have revolutionized networking. Applications are provided with the power to 

configure the network according to their requirements, even when they need to share the networking resources with 

other workloads. Network infrastructures today are deeply programmable down to Layer 2 (L2), with the InfiniBand 

(IB) subnet manager (SM) being the lowest level example of a software-defined controller. This implies the 

programmability of the network stops at the physical infrastructure cabling, which is typically considered fixed after 

deployment. We propose to lift this limitation by introducing a workflow that extends the software-defined control 

capabilities down to L1. Software-defining the physical layer transforms network cabling from a rigid infrastructure 

to a programmable resource that allows physical topology changes to be carried out at runtime. This new 

functionality sets the foundations for a variety of new network operations that were not feasible before, but also 

introduces new implications that need to be dealt with at the higher levels of the network stack. 

The ability to program L1 at runtime using optical switches enables several new use cases. The first one, which 

is also the focus of our current evaluation, is providing resiliency against HW and SW failures in the fabric 

(switches, transceivers and/or servers). The effect of failures on the utilization and efficiency of computing clusters 

is clear across the industry [1-3], highlighting the importance of creating resilient networks. Business-critical 

applications require continuous availability; downtime means lost revenues, lost customers and damage to the 

reputation of the company. Another potential use case for L1 programmability is modifying the physical topology of 

a network to fit application requirements on demand, e.g. to create a torus/mesh among the leaf switches of a fat tree 

to reduce communication time for latency-sensitive applications. Alternatively, in oversubscribed networks, 

bandwidth can be allocated on demand to parts of the network to offer different QoS based on the physical topology. 

Finally, isolation can be applied in the physical layer to disconnect network elements between multiple tenants or to 

isolate hosts that have been identified as potential threats. Our PoC targeted the IB fabric, but these concepts can be 

applied to NVLINK and Ethernet as well. 

Without the ability to change the physical connectivity, current solutions for failure recovery focus on adapting 

the forwarding configuration to exclude the failed paths where possible. Examples of software features in IB are 

SHIELD [4] and adaptive routing that takes advantage of alternative paths. These protocols have two significant 

limitations. First, they can only be used in the case that alternative paths exist; failures on the leaf switches (that will 

disconnect servers from the network) or on the servers cannot be mitigated this way. Secondly, they are not able to 

recover the full performance of the cluster. Another approach to enhance resiliency is to add redundant hardware to 

replicate the whole or parts of the network (e.g. Dual ToR). This approach has the disadvantage of requiring 

significantly more hardware and leads to underutilized resources. 

 

2. Reconfigurable fabric for resilient systems 

We leverage optical circuit switches to implement the L1 programmable dataplane. The optical circuit switches 

redirect the light based on I/O permutations defined by an electrical control interface. By introducing them among 

the switching layers of a given network topology, as in Figure 1a, we enable the programmable change of the point-

to-point fiber connections permutation. Figure 1a shows the network architecture that targets the resilience use case 

in a small scale 2-level (leaf-spine) Fat Tree. We add redundant electrical switches (RS – Redundant Spine and RL – 
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Redundant Leaf) and redundant servers to the network. The redundant devices are connected to available ports of 

the optical switches, as any other main network element. When a device failure is detected, the corresponding 

optical switches are properly configured to disconnect it from the network and replace it with a redundant unit. The 

proposed design allows a programmable degree of resilience: the ratio between the main and redundant devices may 

vary depending on the system requirements. In addition, the proposed architecture can isolate security threats and 

minimize the downtime during maintenance periods, while serving as a generic programmable dataplane.     

We designed and implemented appropriate control plane software that can be viewed as an SDN stack extension 

for L1 dataplane control. An appropriately designed graph representation backend that reflects the physical network 

topology (which also includes the optical switching elements), provides the required system modelling support for 

our controller logic. Subsequently, we introduce a collection of concepts and algorithms that allow the described 

SDN L1 controller to identify the different topology possibilities of a given deployment, carry out the physical 

topology changes and signal the L2 layer controller to adapt to the changes of the physical network. Figure 1 (b and 

c) shows the described control loop of the system, in purple the SDN L1 (Optical Fabric Manager - OFM) is the SW 

that carries out physical changes and delivers notifications to L2 (which in case of IB is the Subnet Manager). 

Likewise, L2 can be extended to request physical topology changes. A failure detection mechanism (out of the scope 

of the current work) notifies the OFM that a device needs to be replaced. The OFM calculates and enforces the 

appropriate optical connections, e.g. in the case of a Leaf switch failure its replacement by RL1 in Fig 1a. 

Subsequently, the network controller includes the newly introduced device in the network. The proposed workflow 

enables the recovery of the network’s capacity to 100% in a few seconds. In addition, as discussed in the following 

sections, we are preventing application crashes caused by device failures.  

   

 
Fig. 1: a) Resilient Architecture Overview, b) Control Loop flowchart and c) SW overview 

 

3. Testbed description 

To demonstrate resilience, an optical switch is interleaved in all small-scale POD connections and a redundant IB 

switch is added to the leaf and spine level to replace failed leaf or spine switches. The testbed consists of 4x DGX 

servers [5] and 14x IB Quantum switches [6]: 8 of them connected as Leaf switches and 4 of them as Spine 

switches. The two additional IB switches are the redundant ones: one redundant Leaf (RL, as in Fig. 1a) and one 

redundant Spine (RS). We use off-the-shelf L1 optical switches [7]. For the optical links we opted for 200 Gb/s 

CWDM pluggable transceivers [8] since they significantly reduce the required optical switch ports and have 

sufficient link budget to support the interception by the optical switch. The DGXs have 8x IB interfaces (8x rails), 

with each rail connected to a different Leaf switch. The Leaf switches are fully connected with the Spines, i.e. there 
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is no oversubscription. All the connections are intercepted by the optical switch allowing for a variety of 

experiments; for the current evaluation we focus on the replacement of IB switches.       

 

4. Experimental procedure & Results 

We emulate switch failures and trigger the SDN L1 controller to search physical topologies for failure mitigation. 

As a result, the redundant switch takes over the role of the failed one in the physical topology, and the IB subnet 

manager receives a topology change notification which instructs it to repair the L2 network configuration. With 

appropriate handling of  IB transport timeout, the running applications can resume execution after this change. 

Figure 2 shows the results of our tests with UCX [9] and NCCL [10] collective communications libraries. In the 

presented testing scenario, we emulate IB switch failures. The diagrams show the bandwidth (y-axis) on the IB 

interfaces of one of the DGXs involved in the experiment over time (x-axis), for all-to-all and all-reduce 

microbenchmarks. The benchmarks produce identical traffic among the 4x DGXs and among the interfaces. We run 

the microbenchmarks, emulate the failures and monitor the performance and status of the application over time. 

During Spine failures the capacity of the system is reduced, due to the reduction of active links, but the application 

does not crash since alternative paths are available. When enabled, our solution restores the full performance of the 

cluster (Spine failover) in a few seconds. In the case of failures on the Leaf layer (Leaf failover), the application 

would crash and the IB interface affected would remain offline until the problem is fixed. With the resilience 

solution enabled, the application keeps running after a few seconds interruption (currently ~7s, but it is subject to 

optimization) and the full capacity of the system is restored. 

 
Fig. 2: Demonstrating BW recovery for microbenchmarks with the resilience solution enabled: a) on the left OSU 

all-to-all and b) on the right NCCL all-reduce. Showing BW for all links over time: the yellow part shows the Tx 

bandwidth, while the purple part shows the Rx BW. The plots are overlapped for all links of one DGX.  

 

5. Conclusion & future work 

We presented a system design and a workflow that combined enable L1 programmability. We have built an 

HPC/ML testbed and evaluated the resilience use case by emulating switch failure scenarios. By adding the optical 

switching network and the redundant devices, we show automated recovery of the full capacity in a few seconds; 

and in addition, we avoid application crashes during Leaf-level failures. In a future work, we plan to present a cost 

analysis and detailed results from additional experiments including the rest of the use cases. 
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