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Abstract: We demonstrate a scalable processing of OPM data using ML to detect anoma-
lies in optical services at run time. A dashboard will show operational SDN controller
metrics, raw OPM data, and the ML assessment results. © 2023 The Author(s)

1. Overview

Optical networks are evolving towards disaggregated infrastructures with frequently executed closed-loop au-
tomation processes, often relying on Machine Learning (ML) models. Software-Defined Networking (SDN) and
ML are two main enablers of this evolution, allowing for a logically centralized control of the network and for
data-driven models to aid decisions, respectively. Autonomous operations allow for low(er) safety margins and
quick(er) reaction to potential service degradation and malfunctioning equipment. However, scalable and efficient
realization of this concepts brings forth several challenges. One challenge relates to the scalability features of
the monitoring data collection process in the presence of an increasing number of devices. Network telemetry is
one viable solution to this problem [1]. Another challenge relates to building suitable pipelines that process the
monitoring data in real time, possibly taking advantage of ML models/ensembles whose composition may change
over time. Currently, solutions taking advantage of open-source software and doing exactly this have been demon-
strated, e.g., [2]. However, the currently available pipelines are monolithic in nature, which makes their scaling
resource inefficient and time consuming (unless redundant resources are pre-allocated).

In this demonstration, we showcase a scalable, efficient, and flexible microservice-based pipeline that tack-
les the limitations of conventional monolithic monitoring solutions. The pipeline is implemented over ETSI
TeraFlowSDN [3], an open-source, microservice-based SDN controller. In the envisioned use case, TeraFlowSDN
deploys and monitors a variable number of optical services monitored through the periodical collection of Optical
Performance Monitoring (OPM) data.The objective is to detect potential anomalies affecting the running optical
services, with the help of a few, pre-selected ML models. The audience will be able to interact with the demo
using a dashboard that visualizes the pipeline inputs/outputs, and allows for selection of the following options:
(i) the ML model to be applied on the OPM data, i.e., Supervised Learning (SL) and/or Unsupervised Learn-
ing (UL); and (ii) the number of active optical services in the network. The results visualized via the dashboard
will highlight how, thanks its microservice-based nature, the TeraFlowSDN monitoring pipeline replicates only
the functionalities that need scaling up, thus improving the resource efficiency and scalability of the pipeline.

2. Innovation

This demonstration showcases a proof-of-concept of a scalable, efficient, and flexible pipeline capable of moni-
toring a large number of optical services with a frequent monitoring cycle (e.g., every 30 seconds). We focus on
the processing of OPM data by ML models that aims at detecting anomalies in the optical services. Scalability
of the solution is demonstrated by varying the number of optical services from a few to several hundreds while
maintaining the targeted monitoring cycle. Efficiency of the solution is demonstrated by the ability of the pipeline
to dynamically self-adjust the amount of committed computational resources. Finally, to illustrate the flexibility of
the solution, UL and SL models can be dynamically activated/deactivated, providing the ability to not only detect
an anomaly, but to classify it as well if needed. Through a dashboard, the audience is able to select how many
optical services are active in the network at any time, as well as which ML model(s) to be deployed, and they are
able to see how these choices impact the final solution of the anomaly detection process.

3. Components and Workflow

The architecture of the demonstrator is illustrated in Fig. 1. The TeraFlowSDN controller manages the optical
network. A transparent Open Line System (OLS) exposes the management configurations of all optical devices.
The OPM data from the devices is sent to the monitoring component of TeraFlowSDN through the South-Bound
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Interface (SBI), while requests for optical services are received by TeraFlowSDN via the North-Bound Interface
(NBI). The demonstrated pipeline is composed of four components: manager, service monitor, ML inference,
and mitigator. Except for the manager, all other components are stateless and can be replicated when their load
increases. A dashboard based on Grafana provides a visualization and configuration interface through which the
audience can configure the use case and observe how performance varies in real time.
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Fig. 1. Architecture of the demonstrator.

Figure 2 illustrates the communication among the pipeline components, and between the pipeline components
and the SDN controller. The demonstration comprises two stages: optical service setup and the monitoring loop.
During service setup, a customer (Fig. 2) requests an optical service. The SDN controller triggers its internal
processes to set the service up. At this stage, the manager needs to (i) be notified of the creation/deletion of
services and (ii) create a list of Key Performance Indicators (KPIs) for the ML assessment of the newly created
service. Thanks to (i), the manager maintains a list of optical services currently active in the network.
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Fig. 2. Communication between the different components in the demonstrator.

In the second stage, the manager periodically triggers the monitoring loop according to a pre-defined frequency.
Using its internal list of active optical services, the manager asks the service monitor to check them one by one.
The requests are sent concurrently, each with a service ID, allowing the replicas of the service monitor to handle the
pipeline of each service independently and balance the load among them. For each optical service, the monitoring
pipeline works as follows. First, the latest OPM data are retrieved from the monitor. To alleviate the load on
the monitor, a copy of latest OPM samples of all services can be saved in the cache (e.g., when using UL [4]).
Once the OPM data is retrieved, the service monitor calls the appropriate ML model(s) within the ML inference
component. The results from the ML inference are included in the monitoring database with the same timestamp
of the monitoring sample that generated it, thus enabling visualization and correlation afterwards. If an anomaly
is detected, the service monitor notifies the mitigator of the affected service ID and the anomaly signature. The
mitigator is responsible for defining a solution to mitigate the anomaly. Mitigation strategies are outside the scope
of this demonstration. We adopt a make-before-break strategy where a new optical service is established over a
node-disjoint path, the traffic is moved to the new service, and the service affected by the anomaly is dropped.
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4. Demo implementation

The architecture of the demonstrator illustrated in Fig. 1 is implemented as follows. We use the ETSI
TeraFlowSDN controller deployed over a Kubernetes cluster as the basis of our demonstrator. An emulated Open
Line System (eOLS) interacts with the SBI of TeraFlowSDN, mimicking a mesh optical network and replaying
OPM data from a recorded dataset. The eOLS allows us to select in real time which specific parts of the dataset
(representing the desired anomaly) to replay for specific optical services. The audience will interact with the
demonstrator through a custom Grafana dashboard that allows the selection of a few demonstrator parameters
and plots the time series of several metrics. The TeraFlowSDN components use gRPC to exchange messages and
are deployed as containers. We take advantage of the Kubernetes replication feature to scale the components by
increasing/decreasing their number of replicas. The manager is the only component that does not replicate.During
initialization, it retrieves the list of currently running optical services from the SDN controller. Moreover, the
failover features of Kubernetes ensure that the loop is resilient to the failure of this component. Linkerd service
mesh is used for load balancing among replicas.
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Fig. 3. Mock of the most relevant dashboard plots showing hypothetical normalized values.

To provide diverse anomaly signatures, the emulated optical network replays normal operating conditions and
two types of anomalies, i.e., physical layer attacks from [5], and anomalous OPM signatures inspired by the spec-
trum filtering anomalies reported in [6]. Figure 3 illustrates three of the main KPIs to be shown by the dashboard,
in a hypothetical scenario. At the beginning, only a few optical services run on the network, the measured monitor-
ing loop time is well below the desired value, and the number of replicas is small. After we deploy more services
in the network, we observe that the loop time increases, even surpassing the desired value in a few instances, but
stabilizing below the desired value due to the increase in the number of replicas. In this illustrative example, we
focus on the case where an UL model is used, which incurs a high processing time required for the inference cal-
culation [4,7]. This translates into the fact that the ML inference requires more replicas than the service monitor.
However, during the demonstration, the audience will be able to select whether to use SL, UL, or both. Other
relevant operational metrics not illustrated here due to space constraints will also be included, such as the average
CPU usage over the replicas of each pipeline component and the response time of each individual component.

5. OFC Relevance

This demonstration will be the first to showcase a proof-of-concept pipeline that meets the scalability requirements
of fully disaggregated, fine-granular and ML-based OPM in large-scale optical network deployments. These topics
are currently very relevant to OFC’s audience. The custom dashboard developed for this demonstration will enable
the audience to set parameters and observe in real time their impact on the experiment outcomes, computational
load, and monitoring loop time. We expect that the highly interactive setup will foster discussions and further
ideas for development in the OFC audience. Scripts for reproducing the demo will be publicly available at the
ETSI TeraFlowSDN repository.
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